首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The avirulence determinant triggering the resistance conferred by the tomato gene Sw‐5 against Tomato spotted wilt virus (TSWV) is still unresolved. Sequence comparison showed two substitutions (C118Y and T120N) in the movement protein NSm present only in TSWV resistance‐breaking (RB) isolates. In this work, transient expression of NSm of three TSWV isolates [RB1 (T120N), RB2 (C118Y) and non‐resistance‐breaking (NRB)] in Nicotiana benthamiana expressing Sw‐5 showed a hypersensitive response (HR) only with NRB. Exchange of the movement protein of Alfalfa mosaic virus (AMV) with NSm supported cell‐to‐cell and systemic transport of the chimeric AMV RNAs into N. tabacum with or without Sw‐5, except for the constructs with NBR when Sw‐5 was expressed, although RB2 showed reduced cell‐to‐cell transport. Mutational analysis revealed that N120 was sufficient to avoid the HR, but the substitution V130I was required for systemic transport. Finally, co‐inoculation of RB and NRB AMV chimeric constructs showed different prevalence of RB or NBR depending on the presence or absence of Sw‐5. These results indicate that NSm is the avirulence determinant for Sw‐5 resistance, and mutations C118Y and T120N are responsible for resistance breakdown and have a fitness penalty in the context of the heterologous AMV system.  相似文献   

3.
The present work describes the identification and characterization of a potyvirus isolated from siratro (Macroptilium atropurpureum Urb.) in the north‐west region of the State of São Paulo, Brazil. The virus was transmitted by mechanical inoculation. Its host range was restricted mainly to members of the Fabaceae. A cDNA fragment of about 930 bp was amplified by RT/PCR, cloned and sequenced. The fragment, which included the coat protein gene, had amino acid identity percentages between 88 and 98% with isolates of Bean common mosaic virus (BCMV). Phylogenetic analysis grouped the siratro potyvirus and BCMV isolates in 99% of the replicates, including Azuki mosaic virus, Dendrobium mosaic virus, Blackeye cowpea mosaic virus and Peanut stripe virus, which have been classified as BCMV strains. This is the first citation on the presence of BCMV in siratro plants in Brazil.  相似文献   

4.
Cross-protection experiments were performed in Chenopodium quinoa using arabis mosaic virus (ArMV) and grapevine fanleaf virus (GFLV) isolates. Two factors were specially studied, namely the time interval and the distance between the two inoculations, respectively, with the hypovirulent isolate and with the hyper virulent challenge isolale. ArMV-S clearly protected C. quinoa from a super infection with GFLV-F13 as shown by a diminution, or even suppression, of the synthesis of the coat protein and the nucleic acids of the GFLV-F13 isolate. In the homologous interaction between GFLV isolates (GH and F13), protection was also observed. In the interaction between GFLV-GH and ArMV-862, by contrast, symptoms were typical of the hyper virulent ArMV-862 and the amount of coat protein of ArMV-862 was normal.  相似文献   

5.
Isolates of Zucchini yellow mosaic virus were obtained from different cucurbit crops in Hangzhou city, China. The complete nucleotide sequences of four isolates and the 3′‐terminal sequences, including the coat protein coding region, of four others were determined and then compared with other available sequences. Phylogenetic analysis of the coat protein nucleotide sequences showed that these isolates fell into three significant groups, one of which (designated group III) consisted exclusively of Chinese isolates and is reported for the first time. Comparisons over the completely sequenced genomes showed that, typically for potyviruses, the 5′‐end of the genome was usually the most variable but that the group III isolate differed from the others most significantly in the N‐terminal part of the coat protein. Partially sequenced group III isolates also varied from other isolates in this region. Group III isolates appear to differ biologically from the other isolates because they do not cause symptoms in watermelon fruit but induce more severe symptoms on the watermelon leaves.  相似文献   

6.
The virus in naturally infected, stunted triticale plants was identified as soil‐borne wheat mosaic virus (SBWMV). The infected plants were collected in the Southern Wielkopolska region (Western Poland). Molecular analysis including RT‐PCR, and sequencing of the complete coding sequence of coat protein gene, was performed. The sequence of the Polish isolate of SBWMV (SBWMV‐Pol1) shared 100, 99 and 98% identities with the corresponding regions of De1 (AF519799), OKL‐1 (X81639) and US‐Nebraska (L07938) isolates of SBWMV, respectively. Phylogenetic analyses showed that the Polish isolate, SBWMV‐Pol1, clustered together with other SBWMV isolates. This is the first report of the occurrence of SBWMV in Poland and the second of its presence in Europe.  相似文献   

7.
Two different isolates of Turnip mosaic virus (TuMV: UK 1 and JPN 1) belonging to different virus strains were tested on three different Brassica species, namely turnip (Brassica rapa L.), Indian mustard (Brassica juncea L.) and Ethiopian mustard (Brassica carinata A. Braun). Although all three hosts were readily infected by isolate UK 1, isolate JPN 1 was able to establish a visible systemic infection only in the first two. Ethiopian mustard plants showed no local or systemic symptoms, and no virus antigens could be detected by enzyme‐linked immunosorbent assay (ELISA). Thus, this species looks like a non‐host for JPN 1, an apparent situation of non‐host resistance (NHR). Through an experimental approach involving chimeric viruses made by gene interchange between two infectious clones of both virus isolates, the genomic region encoding the C‐terminal domain of viral protein P3 was found to bear the resistance determinant, excluding any involvement of the viral fusion proteins P3N‐PIPO and P3N‐ALT in the resistance. A further determinant refinement identified two adjacent positions (1099 and 1100 of the viral polyprotein) as the main determinants of resistance. Green fluorescent protein (GFP)‐tagged viruses showed that the resistance of Ethiopian mustard to isolate JPN 1 is only apparent, as virus‐induced fluorescence could be found in discrete areas of both inoculated and non‐inoculated leaves. In comparison with other plant–virus combinations of extreme resistance, we propose that Ethiopian mustard shows an apparent NHR to TuMV JPN 1, but not complete immunity or extreme resistance.  相似文献   

8.
Potyviruses are a common threat for snap bean production in Bulgaria. During virus surveys of bean plots in the south central region, we identified an isolate of Clover yellow vein virus (ClYVV), designated ClYVV 11B, by indirect ELISA and RT‐PCR causing severe mosaic symptoms and systemic necrosis. Indirect and direct ELISA using ClYVV antisera differentiated the ClYVV isolate from Bean yellow mosaic virus (BYMV), but serological analysis could not distinguish the Bulgarian isolate ClYVV 11B from an Italian ClYVV isolate used as a reference (ClYVV 505/7). RT‐PCR analyses with specific primers revealed that both isolates were ClYVV. Sequence analysis of an 800 bp fragment corresponding to the coat protein coding region showed 94% identity at the nucleotide level between the two isolates. Phylogenetic analyses of aligned nucleotide sequences available in the database confirmed the existence of two groups of isolates, but ClYVV 11B and ClYVV505/7 belonged to the same group. We compared the virulence of both isolates on a set of differential cultivars and 19 bean breeding lines resistant to Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus (BCMNV): Bulgarian isolate ClYVV 11B was able to infect systemically all tested bean differential cultivars and breeding lines including those with genotypes Ibc3 and Ibc22; Italian isolate ClYVV 505/7 was not able to infect systemically some differentials with genotypes bc‐ubc1, bc‐ubc22, bc‐ubc2bc3, Ibc12, Ibc22, Ibc3. The role of bc3 gene as a source of resistance to potyviruses is discussed.  相似文献   

9.
The 3′‐terminal sequences (c. 1700 nt) of the RNA genome of 10 Turnip mosaic virus (TuMV) isolates from different hosts in Zhejiang province, China, were determined. Phylogenetic analysis of the coat protein nucleotide sequences revealed that most TuMV sequences fell into two distinct clusters. The Chinese isolates B1‐B4 (from Brassica spp.) were similar and placed in the largest group (Group 1), while the isolates R1‐R6 (from Raphanus) were usually placed in a distinct but smaller group (Group 2). There were only approximately 90% identical nucleotides between the two groups. However, one isolate (R5) showed evidence of recombination in that the region between nucleotides 430 and 450, from the start of the coat protein gene and its 3′‐terminus, was a Group 1 type.  相似文献   

10.
Samples of trumpet creeper (Campsis radicans) leaves showing mottling and mosaic were collected from plants growing in a private garden in Tehran province, Iran, in 2012. Symptomatic leaf samples were tested for Alfalfa mosaic virus (AMV), Cucumber mosaic virus (CMV) and Peanut stunt virus (PSV) infection in enzyme‐linked immunosorbent assay (ELISA), using specific antibodies. None of the samples were positive for CMV and PSV; however, all reacted positively with that of AMV antiserum. In biological assay, systemic infection was found on Datura stramonium, Nicotiana tabacum cvs., White Burley, and Xanthi, 21 days postinoculation (DPI), while necrotic local lesions were obtained following inoculation of Phaseolus vulgaris and Vigna unguiculata within three to four DPI. Using a pair of primers specific for AMV, a DNA fragment of 880 bp was RT‐PCR‐amplified. Analysis of the sequences revealed the presence of 657 nucleotides of AMV complete coat protein (CP) gene (translating 218 amino acid residues). Phylogenetic analysis using neighbour‐joining (NJ) method clustered AMV isolates into two main types and the IRN‐Tru (GenBank Accession No. JX865593 ) isolate fell into type I. Pairwise nucleotide distances also confirmed two main types with the highest and lowest similarities for type I and II, respectively. The association of AMV with mosaic disease of C. radicans represents the first record from the world.  相似文献   

11.
The complete nucleotide sequence of an Indian strain of Cymbidium mosaic virus (CymMV) was determined and compared with other potexviruses. Phylogenetic analyses on the basis of RNA-dependent RNA polymerase (RdRp), triple gene block protein and coat protein (CP) amino acid sequences revealed that CymMV is closely related to the Narcissus mosaic virus (NMV), Scallion virus X (SVX), Pepino mosaic virus (PepMV) and Potato aucuba mosaic virus (PAMV). Different sets of primers were used for the amplification of different regions of the genome through RT-PCR and the amplified genes were cloned in a suitable vector. The full genome of the Indian isolate of CymMV from Phaius tankervilliae shares 96–97% similarity with isolates reported from other countries. It was found that the CP gene of CymMV shares a high similarity with each other and other potexviruses. One of the Indian isolates seems to be a recombinant formed by the intermolecular recombination of two other CymMV isolates. The phylogenetic analyses, Recombination Detection Program (RDP2) analyses and sequence alignment survey provided evidence for the occurrence of a recombination between an Indian isolate (AM055720) as the major parent, and a Korean type-2 isolate (AF016914) as the minor parent. Recombination was also observed between a Singapore isolate (U62963) as the major parent, and a Taiwan CymMV (AY571289) as the minor parent.  相似文献   

12.
Degenerate Potyviridae primers were used to amplify and sequence the 3′‐terminal regions of viruses from traditional and modern cultivars of sugarcane with mosaic disease growing in different areas of Yunnan province, China. Seven samples contained Sugarcane mosaic virus (SCMV), 11 contained Sorghum mosaic virus (SrMV) and two contained both viruses. SCMV was only isolated from traditional cultivars. In a phylogenetic analysis of the partial NIb and complete coat protein coding regions, most SCMV isolates formed a distinctive phylogenetic cluster (named SO) that otherwise contained only three Vietnamese isolates. SCMV variation seems mostly related to host genotype. In the same analysis, the SrMV isolates formed three major groups, one of which is reported for the first time, but the significance of the grouping is unclear.  相似文献   

13.
Cowpea aphid‐borne mosaic virus (CABMV) causes major diseases in cowpea and passion flower plants in Brazil and also in other countries. CABMV has also been isolated from leguminous species including, Cassia hoffmannseggii, Canavalia rosea, Crotalaria juncea and Arachis hypogaea in Brazil. The virus seems to be adapted to two distinct families, the Passifloraceae and Fabaceae. Aiming to identify CABMV and elucidate a possible host adaptation of this virus species, isolates from cowpea, passion flower and C. hoffmannseggii collected in the states of Pernambuco and Rio Grande do Norte were analysed by sequencing the complete coat protein genes. A phylogenetic tree was constructed based on the obtained sequences and those available in public databases. Major Brazilian isolates from passion flower, independently of the geographical distances among them, were grouped in three different clusters. The possible host adaptation was also observed in fabaceous‐infecting CABMV Brazilian isolates. These host adaptations possibly occurred independently within Brazil, so all these clusters belong to a bigger Brazilian cluster. Nevertheless, African passion flower or cowpea‐infecting isolates formed totally different clusters. These results showed that host adaptation could be one factor for CABMV evolution, although geographical isolation is a stronger factor.  相似文献   

14.
Early studies of the tobravirus Tobacco rattle virus (TRV) described two types of virus isolate with apparently different disease characteristics. M‐type isolates, which contain both viral genomic RNAs and form virus particles, could be passaged by mechanical inoculation and produced rapid but shortlived systemic symptoms. In contrast, NM‐type isolates, which contain only RNA1 and do not form virus particles, were difficult to passage by mechanical inoculation and were very slow to produce systemic symptoms. From the early observations on such isolates made in the 1960s, it has become accepted that M isolates with encapsidated TRV particles move rapidly through the vascular system whereas NM isolates containing only unencapsidated TRV RNA1 move only slowly via plasmodesmata from cell to cell and take many weeks to reach the upper parts of plants. However, we show that NM isolates of TRV and another tobravirus Pea early‐browning virus (PEBV) move into systemic tissue of TV. benthamiana and N. clevelandii by 6 days post inoculation, suggesting that this rapid movement occurs via the vasculature. The systemic movement of TRV and PEBV mutants lacking functional coat protein that have been modified to express the green fluorescent protein were examined by confocal microscopy. This confirmed that the tobraviruses do not require the CP for long distance movement via the phloem, a property that is shared with only a small group of plant viruses.  相似文献   

15.
Brassicaceae crops in eight provinces of the North‐west Iran were surveyed for Turnip mosaic virus (TuMV) infection during 2011 and 2012. Many symptomatic plants (38%; 226 of 598) were found to be infected with TuMV. The highest frequency was in turnip (61%), followed by radish (55%), oilseed rape (38%), and brassica weeds including annual bastard cabbage (42%), small tumbleweed‐mustard (50%) and wild radish (45%), but not Brassica oleracea and Lepidium sativum. Using biological assays, Iranian TuMV isolates grouped in three [B], [B(R)] and [BR] host‐infecting types. Phylogenetic analysis using complete coat protein (CP) gene nucleotide sequences showed that the Iranian isolates belonged to the Basal‐B and Asian‐BR populations. No evidence of recombination was found in these isolates using different recombination‐detecting programmes. To our knowledge, our study shows for the first time the occurrence of TuMV Asian‐BR subpopulation in the mid Eurasian region of Iran. The data suggest that the Asian‐BR subtype population is found across southern Eurasia and might be a continuous population in East Asia (mostly Japan and China) and Minor Asia (Turkey), the places considered to be one of the origins of TuMV populations.  相似文献   

16.
Orchids are some of the most important ornamental flowers. Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) are the most prevalent and economically important viruses affecting orchids in China. In this study, 20 CymMV and 28 ORSV isolates were selected for genetic diversity analysis. The CymMV isolates shared 84.6–100% and 89.5–100% identities of coat protein (CP) at the nucleotide (nt) and amino acid (aa) levels, respectively. The identities of ORSV isolates were 96.4–100% (nt) and 92.5–99.4% (aa). The CP genes of CymMV were found to have genetic diversity, and the CP genes of ORSV were genetically conservative. These results can aid in designing effective disease‐control strategies.  相似文献   

17.
Begomoviruses are one of the major pathogens in tomato crops worldwide. In Venezuela, six begomovirus species have been described infecting tomato: Potato yellow mosaic virus (PYMV), Euphorbia mosaic Venezuela virus (EuMVV), Merremia mosaic virus (MeMV), Tomato chlorotic leaf distortion virus (ToCLDV), Tomato yellow margin leaf curl virus (TYMLCV) and Tomato yellow leaf curl virus (TYLCV). In this study, the occurrence of these viruses was analysed by PCR in 338 tomato plants exhibiting virus‐like symptoms. Sixty‐three per cent of the plants were positive at least to one of the begomoviruses tested. PYMV and TYLCV were the most frequent viruses showing 39.6 and 23.7% occurrence, respectively. Phylogenetic analyses revealed two groups of PYMV isolates from several Caribbean Basin countries. The first group clustered isolates from several countries, including Venezuela, and the second group clustered only Colombian isolates. Due to the high prevalence of PYMV and TYLCV in Venezuela, it is suggested that the surveillance and control strategies currently applied in the country should be focused on these two begomoviruses.  相似文献   

18.
Three isolates of strawberry mottle agent (SMA) from strawberry plants were regularly maintained and multiplied by mechanical inoculation onChenopodium quinoa plants showing mosaic and mottle symptoms. The use of 5 mM borate buffer pH 8.6 or tap water pH 6.6-7.9 with 4 % (m/v) charcoal for homogenization resulted usually in 100 % infection. The total of 2090 plants were infected from 2264 inoculated ones under the same conditions. The infectivity of SMA isolates in crude sap ofC. quinoa was retained from 48 h to 72 h at 20 °C. The dilution end points of SMA isolates were 10-3 while the inactivation temperatures were between 50 and 55 °C. The infectivity of SMA isolates in frozen leaves ofC. quinoa was detected still after six months. Purification procedure of SMA is based on using low molar 25 mM borate buffer pH 8.3 with cysteine hydrochloride, DIECA and Tween 20 for homogenization of infectedC. quinoa leaves, polyethyleneglycol precipitation, clarification with octanol, low and high speed centrifugation and sucrose density-gradient centrifugation. Partially purified preparations are highly infectious, causing mosaic, mottling and tip necrosis ofC. quinoa plants. The agent could not be completely separated from host proteins and it could not be concentrated to a high extent. Isometric virus-like particles 14-16 nm were observed in partially purified preparations.  相似文献   

19.
Cyclodipeptides, formed from two amino acids by cyclodehydration, are produced naturally by many organisms, and are known to possess a large number of biological activities. In this study, we found that cyclo (l ‐Pro‐l ‐Pro) and cyclo (d ‐Pro‐d ‐Pro) (where Pro is proline) could induce defence responses and systemic resistance in Nicotiana benthamiana. Treatment with the two cyclodipeptides led to a reduction in disease severity by Phytophthora nicotianae and Tobacco mosaic virus (TMV) infections compared with controls. Both cyclopeptides triggered stomatal closure, induced reactive oxygen species production and stimulated cytosolic calcium ion and nitric oxide production in guard cells. In addition, the application of cyclodipeptides significantly up‐regulated the expression of the plant defence gene PR‐1a and the PR‐1a protein, and increased cellular salicylic acid (SA) levels. These results suggest that the SA‐dependent defence pathway is involved in cyclodipeptide‐mediated pathogen resistance in N. benthamiana. We report the systemic resistance induced by cyclodipeptides, which sheds light on the potential of cyclodipeptides for the control of plant diseases.  相似文献   

20.
Maize dwarf mosaic is the most widespread virus disease affecting corn production in Hungary. In attempts to identify the causal virus by test plant reactions, enzyme‐linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), only Maize dwarf mosaic virus (MDMV) was detected. To further characterize Hungarian isolates of MDMV, one isolate from each of the sweet corn varieties Dallas, Royalty and GH23‐85 was selected for sequence analysis of its coat protein (CP) gene. The three Hungarian isolates shared CP amino acid sequence similarities of 95–98% not only with one another but also with MDMV isolates from other countries. However, the N‐terminus of the CP of the ‘Dallas’ isolate was unusual in containing a stretch of 13 additional amino acids. This is the first report of variation in the size of the N‐terminus of the MDMV CP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号