首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Idiomorphs mat1-1 and mat1-2 from Mycosphaerella fijiensis , the causal agent of black leaf streak disease of banana, were isolated. Degenerate oligos were used to amplify the HMG box of the mat1-2 idiomorph from M. fijiensis , showing homology with the HMG box of Mycosphaerella graminicola. Using a DNA walking strategy, anchored on the DNA lyase gene towards the HMG box, a 9-kb-long region of mat1-2 was obtained. A 5-kb fragment from the mat1-1 region was obtained by long-range PCR using primers on the flanking regions, which have close to 100% identity between both idiomorphs. High-identity (77–89%), inverted regions within both idiomorphs were found, which suggest unique inversion events, which have not been found before, and that could have been significant in the evolution of this species. The predicted genes showed the conserved introns in both idiomorphs as well as an additional intron within the alpha box. The implications for the evolution of species in the Mycosphaerella complex on banana are discussed.  相似文献   

2.
The genetic structure of Mycosphaerella fijiensis populations around the world was examined using DNA restriction fragment length polymorphism (RFLP) markers. Allele frequencies at 19 nuclear RFLP loci were estimated in a sample of 136 M. fijiensis isolates from five geographical populations representative of banana-producing areas (South-East Asia including the Philippines and Papua New Guinea, Africa, Latin America and Pacific Islands). Within each population, gametic disequilibrium tests between the 19 nuclear RFLP loci were mainly non significant ( P > 0.05), indicating that random sexual reproduction occurred in these populations. All M. fijiensis populations had a high level of genotypic and allelic diversity ( H , gene diversity: 0.25–0.59). The highest levels of gene diversity were found in the two South-East Asian populations ( H : 0.57 and 0.59). Most of the alleles (> 88%) detected in Africa, Latin America and Pacific Islands populations were also detected in South-East Asian populations. Furthermore, a high and significant ( P < 0.05) level of genetic differentiation was observed among M. fijiensis geographical populations (overall estimate of Fst : 0.32). These results were consistent with the hypothesis that M. fijiensis originated in South-East Asia and spread recently to other parts of the world. The level of allelic diversity in M. fijiensis populations from regions other than South-East Asia was drastically reduced, indicating founder effects. The data also suggested rare occurrence of migration of M. fijiensis between continents.  相似文献   

3.
We searched the genome of Mycosphaerella fijiensis for molecular markers that would allow population genetics analysis of this plant pathogen. M. fijiensis, the causal agent of banana leaf streak disease, also known as black Sigatoka, is the most devastating pathogen attacking bananas (Musa spp). Recently, the entire genome sequence of M. fijiensis became available. We screened this database for VNTR markers. Forty-two primer pairs were selected for validation, based on repeat type and length and the number of repeat units. Five VNTR markers showing multiple alleles were validated with a reference set of isolates from different parts of the world and a population from a banana plantation in Costa Rica. Polymorphism information content values varied from 0.6414 to 0.7544 for the reference set and from 0.0400 and 0.7373 for the population set. Eighty percent of the polymorphism information content values were above 0.60, indicating that the markers are highly informative. These markers allowed robust scoring of agarose gels and proved to be useful for variability and population genetics studies. In conclusion, the strategy we developed to identify and validate VNTR markers is an efficient means to incorporate markers that can be used for fungicide resistance management and to develop breeding strategies to control banana black leaf streak disease. This is the first report of VNTR-minisatellites from the M. fijiensis genome sequence.  相似文献   

4.
BACKGROUND: Banana (Musa spp.) is grown throughout the tropical and subtropical regions of the world. The fruits are a key staple food in many developing countries and a source of income for subsistence farmers. Bananas are also a major, multibillion-dollar export commodity for consumption primarily in developed countries, where few banana cultivars are grown. The fungal pathogen Mycosphaerella fijiensis causes black leaf streak disease (BLSD; aka black Sigatoka leaf spot) on the majority of edible banana cultivars grown worldwide. The fact that most of these cultivars are sterile and unsuitable for the breeding of resistant lines necessitates the extensive use of fungicides as the primary means of disease control. BLSD is a significant threat to the food security of resource-poor populations who cannot afford fungicides, and increases the environmental and health hazards where large-acreage monocultures of banana (Cavendish subgroup, AAA genome) are grown for export. TAXONOMY: Mycosphaerella fijiensis M. Morelet is a sexual, heterothallic fungus having Pseudocercospora fijiensis (M. Morelet) Deighton as the anamorph stage. It is a haploid, hemibiotrophic ascomycete within the class Dothideomycetes, order Capnodiales and family Mycosphaerellaceae. Its taxonomic placement is based on DNA phylogeny, morphological analyses and cultural characteristics. DISEASE SYMPTOMS AND HOST RANGE: Mycosphaerella fijiensis is a leaf pathogen that causes reddish-brown streaks running parallel to the leaf veins, which aggregate to form larger, dark-brown to black compound streaks. These streaks eventually form fusiform or elliptical lesions that coalesce, form a water-soaked border with a yellow halo and, eventually, merge to cause extensive leaf necrosis. The disease does not kill the plants immediately, but weakens them by decreasing the photosynthetic capacity of leaves, causing a reduction in the quantity and quality of fruit, and inducing the premature ripening of fruit harvested from infected plants. Although Musa spp. are the primary hosts of M. fijiensis, the ornamental plant Heliconia psittacorum has been reported as an alternative host. NEW OPPORTUNITIES: Several valuable tools and resources have been developed to overcome some of the challenges of studying this host-pathogen system. These include a DNA-mediated fungal transformation system and the ability to conduct targeted gene disruptions, reliable quantitative plant bioassays, diagnostic probes to detect and differentiate M. fijiensis from related pathogens and to distinguish strains of different mating types, and a genome sequence that has revealed a wealth of gene sequences and molecular markers to be utilized in functional and population biology studies. USEFUL WEBSITES: http://bananas.bioversityinternational.org/, http://genome.jgi-psf.org/Mycfi2/Mycfi2.home.html, http://www.isppweb.org/names_banana_pathogen.asp#fun, http://www.promusa.org/.  相似文献   

5.
Organic banana production demands alternatives for controlling black leaf streak disease caused by Mycosphaerella fijiensis Morelet. The foliar application of a Trichoderma-based bioproduct increased the plant growth and provides some degree of control by reduction of the disease severity in two growing cycles of the banana plants cv. ‘Williams’.  相似文献   

6.
7.
8.
Banana leaves showing different levels of black Sigatoka disease were collected from an unsprayed plantation in Costa Rica during two separate periods representing the wet to dry season transition (October 1993 – February 1994) and the dry to wet season transition (April – September 1995). Laboratory studies were used to investigate the relationship between the release of Mycosphaerella fijiensis ascospores and the amount of inoculum on banana plants showing different levels of infection, as assessed by leaf necrotic area. The number of perithecia present in the necrotic area was used as an indication of potential ascospore loads and was investigated as a series of regression equations. A series of rewetting and incubation regimes was used to investigate spore release under field conditions (21°C and 100% relative humidity in the early morning and 28°C, 60% relative humidity on days when it rained in mid-afternoon). Results suggest that rainfall, combined with a high temperature, may lead to peaks of ascospore release but without necessarily increasing overall numbers released over periods of up to 4 days and that a high level of spore release was less sensitive to changes in temperature once it had been initiated. The exact role of temperature in spore release is still unclear, however, as leaf samples kept at atypically low temperatures also released non-germinating ascospores. An average of 4.5 ascospores was released per perithecium. This does not resolve ambiguities in the literature regarding the number of ascospores present in each perithecium. A linear model relating the average ascospore numbers and necrotic area, using quick estimates of the amounts of necrotic area on the leaves of a random sample of plants across a plantation, is proposed, to give an indication of the relative amount of airborne inoculum potentially available between different plantations.  相似文献   

9.
10.
Recent findings are consistent with a slow but constant shift towards reduced sensitivity of Mycosphaerella graminicola to azole fungicides, which target the CYP51 gene. The goal of this study was to elucidate the evolutionary mechanisms through which CYP51-based mutations associated with altered sensitivity have evolved in M. graminicola over space and time. To accomplish this, we sequenced and compared a portion of the CYP51 gene encompassing the main mutations associated with altered sensitivity towards demethylation inhibitor fungicides. The CYP51 gene showed an extraordinary dynamic shift consistent with a selective haplotype replacement both in space and in time. No mutations associated with increased resistance to azoles were found in non-European populations. These mutations were also absent in the oldest collections from Europe, whereas they dominated in the recent European populations. Intragenic recombination was identified as an important evolutionary process in populations affected by high fungicide selection, suggesting the creation of novel alleles among existing mutations as a potential source of novel resistance alleles. We propose that CYP51 mutations giving resistance in M. graminicola arose only locally (perhaps in Denmark or the UK) and were then spread eastward across Europe through wind-dispersed ascospores. We conclude that recurring cycles of recombination coupled with selection due to the widespread use of azole fungicides will increase the frequency of novel mutants or recombinants with higher resistance. Long-distance gene flow due to wind dispersal of ascospores will move the resulting new alleles to new areas following the prevailing wind directions. A selective replacement favouring haplotypes with various coding mutations at the target site for azole fungicides during the last 5-10 years is the most likely cause of the decrease in sensitivity reported for many azole fungicides in the same period.  相似文献   

11.
A bacterial artificial chromosome library of the causal agent of the Black Sigatoka leaf spot disease of banana and plantain, Mycosphaerella fijiensis, has been constructed using a non-sphaeroplasting technique and characterized using both homologous and heterologous probes. After first and a second size selection of PFGE-fractionated DNA, a ligation was obtained using a 1:4 molar ratio (insert:vector). One hundred random clones were analyzed, and the mean insert size was estimated to be 90 kb. The range of the insert sizes was between 40 and 160 kb. The highest percentage of inserts belonged to the range between 80 and 100 kb; 32% of the inserts had 2 or 3 internal NotI sites. This library consists of 1920 clones, if the genomic size is at least 35 Mb, then this represents 4.9× genome equivalents, which was supported by hybridization results with homologous and heterologous probes. Blondy Canto-Canché and Diana Karina Guillén-Maldonado contributed equally to this work and should be regarded as co-first authors.  相似文献   

12.
A total of 1673 Mycosphaerella graminicola strains were assayed for DNA fingerprints and restriction fragment length polymorphism (RFLP) markers in the nuclear and mitochondrial genomes. The isolates were collected from 17 wheat fields located in 11 countries on five continents over a six year period (1989-1995). Our results indicate that genetic diversity in the nuclear genome of this fungus was high for all but three of the field populations surveyed and that populations sampled from different continents had similar frequencies for the most common RFLP alleles. Hierarchical analysis revealed that more than 90% of global gene diversity was distributed within a wheat field, while approximately 5% of gene diversity was distributed among fields within regions and approximately 3% was distributed among regions on different continents. These findings suggest that gene flow has occurred on a global scale. On average, each leaf was colonized by a different nuclear genotype. In contrast, only seven mtDNA haplotypes were detected among the 1673 isolates and the two most common mtDNA haplotypes represented approximately 93% of the world population, consistent with a selective sweep. Analysis of multilocus associations indicated that all field populations were in gametic equilibrium, suggesting that sexual recombination is a regular occurrence globally.  相似文献   

13.
14.
In recent years, Mycosphaerella leaf disease (MLD) has become very common in Eucalyptus globulus plantations in Galicia, northwest Spain. The aetiology of MLD is complex and is associated with several species of Mycosphaerella and Teratosphaeria. A survey of the fungal mycobiota associated with juvenile and adult leaves and with leaf litter of the same trees in MLD‐affected plantations was made. The goal was to identify pathogens and endophytes, to determine whether the mycobiota of each leaf type differed and whether leaf litter might be a reservoir of MLD inoculum. Fungi belonging to 113 different species were isolated from the leaves of juvenile and adult trees sampled at 10 locations; 81 species occurred in juvenile and 65 in adult leaves. The average number of species obtained from juvenile leaves was significantly greater (P > 0.01) compared to adult leaves. This difference suggested that juvenile leaves are not only more susceptible to a group of pathogens, but to a wide range of fungi. Therefore, a general resistance mechanism might be lacking or be less effective in juvenile than in adult leaves. Several pathogenic species were identified in both leaf types. Leaf litter and living leaf mycobiotas were very different. However, some of the species they shared were MLD pathogens, suggesting that leaf litter could contribute to the inoculum of MLD.  相似文献   

15.
16.
17.
DAS-ELISA studies were conducted on detection of sugarcane yellow leaf virus (SCYLV) causing yellow leaf syndrome (YLS) of sugarcane in leaf and juice antigens. Among the two types of antigen sources used for the virus detection, juice antigen showed high titre for the virus as compared to leaf antigen. Assay with juice samples recorded more number of varieties positive to the virus. Further DAS-ELISA studies revealed that plants raised from disease-infected planting materials recorded high titre for SCYLV as compared to those raised from symptom-free seed canes. Similarly, assaying SCYLV titre in plant and ratoon crop in the field showed that SCYLV infection was partial in plant crop and in the subsequent ratoon crop, all the samples were positive to the virus. ELISA studies also indicated that 33 of 41 cane varieties showing YLS were positive to the virus.  相似文献   

18.
It is hypothesized that the virulence of phytopathogenic fungi is mediated through the secretion of small effector proteins that interfere with the defence responses of the host plant. In Fusarium oxysporum, one family of effectors, the Secreted In Xylem (SIX) genes, has been identified. We sought to characterize the diversity and evolution of the SIX genes in the banana‐infecting lineages of F. oxysporum f. sp. cubense (Foc). Whole‐genome sequencing data were generated for the 23 genetic lineages of Foc, which were subsequently queried for the 14 known SIX genes (SIX1SIX14). The sequences of the identified SIX genes were confirmed in a larger collection of Foc isolates. Genealogies were generated for each of the SIX genes identified in Foc to further investigate the evolution of the SIX genes in Foc. Within Foc, variation of the SIX gene profile, including the presence of specific SIX homologues, correlated with the pathogenic race structure of Foc. Furthermore, the topologies of the SIX gene trees were discordant with the topology of an infraspecies phylogeny inferred from EF‐1α/RPB1/RPB2 (translation elongation factor‐1α/RNA polymerase II subunit I/RNA polymerase II subunit II). A series of topological constraint models provided strong evidence for the horizontal transmission of SIX genes in Foc. The horizontal inheritance of pathogenicity genes in Foc counters previous assumptions that convergent evolution has driven the polyphyletic phylogeny of Foc. This work has significant implications for the management of Foc, including the improvement of diagnostics and breeding programmes.  相似文献   

19.
Cassiicolin, a phytotoxin produced by the necrotrophic fungus Corynespora cassiicola, was purified to homogeneity from a rubber tree isolate. The optimized protocol involves reverse phase chromatography followed by size exclusion chromatography, with monitoring of the toxicity on detached rubber tree leaves. Cassiicolin appeared to be a peptide composed of 27 amino acids, glycosylated on the second residue, with a N-terminal pyroglutamic acid and 6 cysteines involved in disulfide bonds. Its molecular mass was estimated to be 2885 Da. No significant sequence homology with other proteins could be found. The availability of pure toxin in sufficient amount is a prerequisite for its structure determination, which is a key step in the understanding of the aggression mechanism.  相似文献   

20.
We previously characterised the C-type lectin-like receptor genes B-NK and B-lec, located next to each other in opposite orientations in the chicken major histocompatibility complex (MHC). We showed that B-NK is an inhibitory receptor expressed on natural killer cells, whereas B-lec is an activation-induced receptor with a broader expression pattern. It is interesting to note that the chicken MHC has been linked with resistance or susceptibility to Marek's disease virus (MDV), an oncogenic herpes virus. Recent reports show that the C-type lectin-like receptors in mouse and rat (Ly49H, NKR-P1 and Clr) are associated with resistance to another herpesvirus, cytomegalovirus (CMV). Therefore, B-NK and B-lec are potential candidate genes for the MHC-mediated resistance to MDV. In this paper, we report that both genes encode glycosylated type II membrane proteins that form disulphide-linked homodimers. The gene sequences from nine lines of domestic chicken representing seven haplotypes show that B-lec is well conserved between the different haplotypes, apparently under purifying selection. In contrast, B-NK has high allelic polymorphism and moderate sequence diversity, with 21 nucleotide changes in the complementary deoxyribonucleic acids (cDNAs) resulting in 20 amino acid substitutions. The allelic variations include substitutions, an indel and loss/gain of three predicted N-linked glycosylation sites. Strikingly, there is as much as 7% divergence between protein sequences of B-NK from different haplotypes, greater than the difference observed between the highly polymorphic human KIR NK receptors. Analysis of ds and dn reveal evidence of strong positive selection for B-NK to be polymorphic at the protein level, and modelling demonstrates significant variation between haplotypes in the predicted ligand binding face of B-NK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号