首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanisms by which colicins, protein toxins produced by Escherichia coli, kill other E. coli, have become much better understood in recent years. Most colicins initially bind to an outer membrane protein receptor, and then search for a separate nearby outer membrane protein translocator that serves as a pathway into target cells. Many colicins use the outer membrane porin, OmpF, as that translocator, while using a different primary receptor. Colicin N is unique among known colicins in that only OmpF had been identified as being required for uptake of the colicin and it was presumed to somehow serve as both receptor and translocator. Genetic screens also identified a number of genes required for lipopolysaccharide (LPS) synthesis as uniquely required for killing by colicin N, but not by other colicins. Johnson et al. show that the receptor‐binding domain of colicin N binds to LPS, and does not require OmpF for that binding. LPS of a minimal length is required for binding, explaining the requirement for specific elements of the LPS biosynthetic pathway. For colicin N, the receptor‐binding domain does not recognize a protein, but rather the most abundant component of the outer membrane itself, LPS.  相似文献   

2.
Diffusion of two Escherichia coli outer membrane proteins—the cobalamin (vitamin B12) receptor (BtuB) and the OmpF porin, which are implicated in the cellular import pathways of colicins and phages—was measured in vivo. The lateral mobility of these proteins is relevant to the mechanism of formation of the translocon for cellular import of colicins such as the rRNase colicin E3. The diffusion coefficient (D) of BtuB, the primary colicin receptor, complexed to fluorescent antibody or colicin, is 0.05 ± 0.01 μm2/s and 0.10 ± 0.02 μm2/s, respectively, over a timescale of 25-150 ms. Mutagenesis of the BtuB TonB box, which eliminates or significantly weakens the interaction between BtuB and the TonB energy-transducing protein that is anchored in the cytoplasmic membrane, resulted in a fivefold larger value of D, 0.27 ± 0.06 μm2/s for antibody-labeled BtuB, indicating a cytoskeletal-like interaction of TonB with BtuB. OmpF has a diffusion coefficient of 0.006 ± 0.002 μm2/s, ∼10-fold smaller than that of BtuB, and is restricted within a domain of diameter 100 nm, showing it to be relatively immobile compared to BtuB. Thus, formation of the outer membrane translocon for cellular import of the nuclease colicins is a demonstrably dynamic process, because it depends on lateral diffusion of BtuB and collisional interaction with relatively immobile OmpF.  相似文献   

3.
The interaction of colicins with target cells is a paradigm for protein import. To enter cells, bactericidal colicins parasitize Escherichia coli outer membrane receptors whose physiological purpose is the import of essential metabolites. Colicins E1 and E3 initially bind to the BtuB receptor, whose beta-barrel pore is occluded by an N-terminal globular "plug". The x-ray structure of a complex of BtuB with the coiled-coil BtuB-binding domain of colicin E3 did not reveal displacement of the BtuB plug that would allow passage of the colicin (Kurisu, G., S. D. Zakharov, M. V. Zhalnina, S. Bano, V. Y. Eroukova, T. I. Rokitskaya, Y. N. Antonenko, M. C. Wiener, and W. A. Cramer. 2003. Nat. Struct. Biol. 10:948-954). This correlates with the inability of BtuB to form ion channels in planar bilayers, shown in this work, suggesting that an additional outer membrane protein(s) is required for colicin import across the outer membrane. The identity and interaction properties of this OMP were analyzed in planar bilayer experiments.OmpF and TolC channels in planar bilayers were occluded by colicins E3 and E1, respectively, from the trans-side of the membrane. Occlusion was dependent upon a cis-negative transmembrane potential. A positive potential reversibly opened OmpF and TolC channels. Colicin N, which uses only OmpF for entry, occludes OmpF in planar bilayers with the same orientation constraints as colicins E1 and E3. The OmpF recognition sites of colicins E3 and N, and the TolC recognition site of colicin E1, were found to reside in the N-terminal translocation domains. These data are considered in the context of a two-receptor translocon model for colicin entry into cells.  相似文献   

4.
Pore-forming colicins are a family of protein toxins (Mr40–70kDa) produced by Escherichia coli and related bacteria. They are bactericidal by virtue of their ability to form ion channels in the inner membrane of target cells. They provide a useful means of studying questions such as toxin action, polypeptide translocation across and into membranes, voltage-gated channels and receptor function. These colicins bind to a receptor in the outer membrane before being translocated across the cell envelope with the aid of helper proteins that belong to nutrient-uptake systems and the so-called‘Tol’proteins, the function of which has not yet been properly defined. A distinct domain appears to be associated with each of three steps (receptor binding, translocation and formation of voltage-gated channels). The Tol-dependent uptake pathway is described here. The structures and interactions of TolA, B, Q and R have by now been quite clearly defined. Transmembrane α-helix interactions are required for the functional assembly of the E. coli Tol complex, which is preferentially located at contact sites between the inner and outer membranes. The number of colicin translocation sites is about 1000 per cell. The role and the involvement of the OmpF porin (with colicins A and N) have been described in a recent study on the structural and functional interactions of a colicin-resistant mutant of OmpF. The X-ray crystal structure of the channel-forming fragment of colicin A and that of the entire colicin la have provided the basis for biophysical and site-directed muta-genesis studies. Thanks to this powerful combination, it has been established that the interaction with the receptor in the outer membrane leads to a very substantial conformational change, as a result of which the N-terminal domains of colicins interact with the lumen of the OmpF pore and then with the C-terminal domain of TolA. A molten globular conformation of colicins probably constitutes the intermediate translocation/insertion competent state. Once the pore has formed, the polypeptide chain spans the whole cell envelope. Three distinct steps occur in the last stage of the process: (i) fast binding of the C-terminal domain to the outer face of the cytoplasmic membrane; (ii) a slow insertion of the polypeptide chain into the outer face of the inner membrane in the absence of Δψ and (iii) a profound reorganization of the helix association, triggered by the transmembrane potential and resulting in the formation of the colicin channel.  相似文献   

5.
Colicins A, E1, E2 and E3 belong to the BtuB group of colicins. The NH2-terminal region of colicin A is required for translocation, and defects in this region cannot be overcome by osmotic shock of sensitive cells. In addition to BtuB, colicin A requires OmpF for efficient uptake by sensitive cells. The roles of BtuB and OmpF in translocation and binding to the receptor of the colicins A, E1, E2 and E3 were compared. The results suggest that for colicin A OmpF is used both as a receptor and for translocation across the outer membrane. In contrast, for colicin E1, OmpF is used neither as a receptor nor for translocation. For colicins E2 and E3, the situation is intermediate: only BtuB is used as a receptor but both BtuB and OmpF are involved in the translocation step.  相似文献   

6.
asmA mutations were isolated as extragenic suppressors of an OmpF assembly mutant, OmpF315. This suppressor locus produced a protein that was present in extremely low levels and could only be visualized by Western blotting in cells where AsmA expression was induced from a plasmid. Detailed fractionation analyses showed that AsmA localized with the inner membrane. Curiously, however, the mutant OmpF assembly step influenced by AsmA occurred in the outer membrane, perhaps indicating an indirect involvement of AsmA in the assembly of outer membrane proteins. Biochemical examination of the outer membrane showed that asmA null mutations reduce lipo-polysaccharide (LPS) levels, thereby lowering the ratios of glycerolphospholipids to LPS and envelope proteins to LPS in the outer membrane. Despite these quantitative alterations, no apparent structural changes in LPS or major phospholipids were noted. Reduced LPS levels in asmA mutants indicate a possible role of AsmA in LPS biogenesis. Data presented in this study suggest that asmA-mediated OmpF assembly suppression may have been achieved by altering the outer membrane fluidity, thus making it more amenable for the assembly of mutant proteins.  相似文献   

7.
The OmpF porin in the Escherichia coli outer membrane (OM) is required for the cytotoxic action of group A colicins, which are proposed to insert their translocation and active domains through OmpF pores. A crystal structure was sought of OmpF with an inserted colicin segment. A 1.6 A OmpF structure, obtained from crystals formed in 1 M Mg2+, has one Mg2+ bound in the selectivity filter between Asp113 and Glu117 of loop 3. Co-crystallization of OmpF with the unfolded 83 residue glycine-rich N-terminal segment of colicin E3 (T83) that occludes OmpF ion channels yielded a 3.0 A structure with inserted T83, which was obtained without Mg2+ as was T83 binding to OmpF. The incremental electron density could be modelled as an extended poly-glycine peptide of at least seven residues. It overlapped the Mg2+ binding site obtained without T83, explaining the absence of peptide binding in the presence of Mg2+. Involvement of OmpF in colicin passage through the OM was further documented by immuno-extraction of an OM complex, the colicin translocon, consisting of colicin E3, BtuB and OmpF.  相似文献   

8.
Lipopolysaccharide (LPS, endotoxin) is the major component of the outer leaflet of the outer membrane of Gram‐negative bacteria such as Escherichia coli and Salmonella typhimurium. LPS is a large lipid containing several acyl chains as its hydrophobic base and numerous sugars as its hydrophilic core and O‐antigen domains, and is an essential element of the organisms' natural defenses in adverse environmental conditions. LptC is one of seven members of the lipopolysaccharide transport (Lpt) protein family that functions to transport LPS from the inner membrane (IM) to the outer leaflet of the outer membrane of the bacterium. LptC is anchored to the IM and associated with the IM LptFGB2 complex. It is hypothesized that LPS binds to LptC at the IM, transfers to LptA to cross the periplasm, and is inserted by LptDE into the outer leaflet of the outer membrane. The studies described here comprehensively characterize and quantitate the binding of LPS to LptC. Site‐directed spin labeling electron paramagnetic resonance spectroscopy was utilized to characterize the LptC dimer in solution and monitor spin label mobility changes at 10 sites across the protein upon addition of exogenous LPS. The results indicate that soluble LptC forms concentration‐independent N‐terminal dimers in solution, LptA binding does not change the conformation of the LptC dimer nor appreciably disrupt the LptC dimer in vitro, and LPS binding affects the entire LptC protein, with the center and C‐terminal regions showing a greater affinity for LPS than the N‐terminal domain, which has similar dissociation constants to LptA.  相似文献   

9.
Colicins kill Escherichia coli after translocation across the outer membrane. Colicin N displays an unusually simple translocation pathway, using the outer membrane protein F (OmpF) as both receptor and translocator. Studies of this binary complex may therefore reveal a significant component of the translocation pathway. Here we show that, in 2D crystals, colicin is found outside the porin trimer, suggesting that translocation may occur at the protein-lipid interface. The major lipid of the outer leaflet interface is lipopolysaccharide (LPS). It is further shown that colicin N binding displaces OmpF-bound LPS. The N-terminal helix of the pore-forming domain, which is not required for pore formation, rearranges and binds to OmpF. Colicin N also binds artificial OmpF dimers, indicating that trimeric symmetry plays no part in the interaction. The data indicate that colicin is closely associated with the OmpF-lipid interface, providing evidence that this peripheral pathway may play a role in colicin transmembrane transport.  相似文献   

10.
Gram‐negative bacteria can survive in harsh environments in part because the asymmetric outer membrane (OM) hinders the entry of toxic compounds. Lipid asymmetry is established by having phospholipids (PLs) confined to the inner leaflet of the membrane and lipopolysaccharides (LPS) to the outer leaflet. Perturbation of OM lipid asymmetry, characterized by PL accumulation in the outer leaflet, disrupts proper LPS packing and increases membrane permeability. The multi‐component Mla system prevents PL accumulation in the outer leaflet of the OM via an unknown mechanism. Here, we demonstrate that in Escherichia coli, the Mla system maintains OM lipid asymmetry with the help of osmoporin OmpC. We show that the OM lipoprotein MlaA interacts specifically with OmpC and OmpF. This interaction is sufficient to localize MlaA lacking its lipid anchor to the OM. Removing OmpC, but not OmpF, causes accumulation of PLs in the outer leaflet of the OM in stationary phase, as was previously observed for MlaA. We establish that OmpC is an additional component of the Mla system; the OmpC‐MlaA complex may function to remove PLs directly from the outer leaflet to maintain OM lipid asymmetry. Our work reveals a novel function for the general diffusion channel OmpC in lipid transport.  相似文献   

11.
The ability of Escherichia coli to kill other E. coli using protein antibiotics known as colicins has been known for many years, but the mechanisms involved poorly understood. Recent progress has been rapid, however, particularly concerning events on either side of the outer membrane (OM). Structures of colicins bound to OM receptors have been determined and we have detailed mechanistic information on how colicins subvert the periplasmic complexes of TolQRAB/Pal or TonB/ExbB/ExbD to trigger cell entry. In this issue of Molecular Microbiology, Jakes and Finkelstein answer a long‐standing problem concerning the uptake mechanism of the pore‐forming colicin ColIa: How does the TonB box of the colicin cross the OM following high‐affinity binding of ColIa to its primary receptor, the siderophore transporter Cir? Through a series of chimeric protein constructions tested for their activity against a range of mutants and in cell death protection assays, the authors come up with the surprising observation that following binding of ColIa to Cir it recruits another Cir protein as its OM translocator. Not only does this settle various conundrums in the literature, but the translocation mechanism that stems from their study will likely be applicable to many TonB‐dependent colicins.  相似文献   

12.
The asymmetric outer membrane of Gram-negative bacteria is formed of the inner leaflet with phospholipids and the outer leaflet with lipopolysaccharides (LPS). Outer membrane protein F (OmpF) is a trimeric porin responsible for the passive transport of small molecules across the outer membrane of Escherichia coli. Here, we report the impact of different levels of heterogeneity in LPS environments on the structure and dynamics of OmpF using all-atom molecular dynamics simulations. The simulations provide insight into the flexibility and dynamics of LPS components that are highly dependent on local environments, with lipid A being the most rigid and O-antigen being the most flexible. Increased flexibility of O-antigen polysaccharides is observed in heterogeneous LPS systems, where the adjacent O-antigen repeating units are weakly interacting and thus more dynamic, compared to homogeneous LPS systems in which LPS interacts strongly with each other with limited overall flexibility due to dense packing. The model systems were validated by comparing molecular-level details of interactions between OmpF surface residues and LPS core sugars with experimental data, establishing the importance of LPS core oligosaccharides in shielding OmpF surface epitopes recognized by monoclonal antibodies. There are LPS environmental influences on the movement of bulk ions (K+ and Cl), but the ion selectivity of OmpF is mainly affected by bulk ion concentration.  相似文献   

13.
Lipopolysaccharide (LPS) and the periplasmic protein, LptA, are two essential components of Gram‐negative bacteria. LPS, also known as endotoxin, is found asymmetrically distributed in the outer leaflet of the outer membrane of Gram‐negative bacteria such as Escherichia coli and plays a role in the organism's natural defense in adverse environmental conditions. LptA is a member of the lipopolysaccharide transport protein (Lpt) family, which also includes LptC, LptDE, and LptBFG2, that functions to transport LPS through the periplasm to the outer leaflet of the outer membrane after MsbA flips LPS across the inner membrane. It is hypothesized that LPS binds to LptA to cross the periplasm and that the acyl chains of LPS bind to the central pocket of LptA. The studies described here are the first to comprehensively characterize and quantitate the binding of LPS by LptA. Using site‐directed spin‐labeling electron paramagnetic resonance (EPR) spectroscopy, data were collected for 15 spin‐labeled residues in and around the proposed LPS binding pocket on LptA to observe the mobility changes caused by the presence of exogenous LPS and identify the binding location of LPS to LptA. The EPR data obtained suggest a 1:1 ratio for the LPS:LptA complex and allow the first calculation of dissociation constants for the LptA–LPS interaction. The results indicate that the entire protein is affected by LPS binding, the N‐terminus unfolds in the presence of LPS, and a mutant LptA protein unable to form oligomers has an altered affinity for LPS.  相似文献   

14.
The crystal structure of the complex of the BtuB receptor and the 135-residue coiled-coil receptor-binding R-domain of colicin E3 (E3R135) suggested a novel mechanism for import of colicin proteins across the outer membrane. It was proposed that one function of the R-domain, which extends along the outer membrane surface, is to recruit an additional outer membrane protein(s) to form a translocon for passage colicin activity domain. A 3.5-A crystal structure of the complex of E2R135 and BtuB (E2R135-BtuB) was obtained, which revealed E2R135 bound to BtuB in an oblique orientation identical to that previously found for E3R135. The only significant difference between the two structures was that the bound coiled-coil R-domain of colicin E2, compared with that of colicin E3, was extended by two and five residues at the N and C termini, respectively. There was no detectable displacement of the BtuB plug domain in either structure, implying that colicin is not imported through the outer membrane by BtuB alone. It was concluded that the oblique orientation of the R-domain of the nuclease E colicins has a function in the recruitment of another member(s) of an outer membrane translocon. Screening of porin knock-out mutants showed that either OmpF or OmpC can function in such a translocon. Arg(452) at the R/C-domain interface in colicin E2 was found have an essential role at a putative site of protease cleavage, which would liberate the C-terminal activity domain for passage through the outer membrane translocon.  相似文献   

15.
Amphipols (APol) are polymers which can solubilise and stabilise membrane proteins (MP) in aqueous solutions. In contrast to conventional detergents, APol are able to keep MP soluble even when the free APol concentration is very low. Outer membrane protein F (OmpF) is the most abundant MP commonly found in the outer membrane (OM) of Escherichia coli. It plays a vital role in the transport of hydrophilic nutrients, as well as antibiotics, across the OM. In the present study, APol was used to solubilise OmpF to characterize its interactions with molecules such as lipopolysaccharides (LPS) or colicins. OmpF was reconstituted into APol by the removal of detergents using Bio-Beads followed by size-exclusion chromatography (SEC) to remove excess APol. OmpF/APol complexes were then analysed by SEC, dynamic light scattering (DLS) and transmission electron microscopy (TEM). TEM showed that in the absence of free APol–OmpF associated as long filaments with a thickness of ~6 nm. This indicates that the OmpF trimers lie on their sides on the carbon EM grid and that they also favour side by side association. The formation of filaments requires APol and occurs very rapidly. Addition of LPS to OmpF/APol complexes impeded filament formation and the trimers form 2D sheets which mimic the OM. Consequently, free APol is undoubtedly required to maintain the homogeneity of OmpF in solutions, but ‘minimum APol’ provides a new phase, which can allow weaker protein–protein and protein–lipid interactions characteristic of native membranes to take place and thus control 1D–2D crystallisation.  相似文献   

16.
Bacteria often produce toxins which kill competing bacteria. Colicins, produced by and toxic to Escherichia coli bacteria are three‐domain proteins so efficient that one molecule can kill a cell. The C‐terminal domain carries the lethal activity and the central domain is required for surface receptor binding. The N‐terminal domain, required for translocation across the outer membrane, is always intrinsically unstructured. It has always been assumed therefore that the C‐terminal cytotoxic domain is required for the bactericidal activity. Here we report the unexpected finding that in isolation, the 90‐residue unstructured N‐terminal domain of colicin N is cytotoxic. Furthermore it causes ion leakage from cells but, unlike known antimicrobial peptides (AMPs) with this property, shows no membrane binding behaviour. Finally, its activity remains strictly dependent upon the same receptor proteins (OmpF and TolA) used by full‐length colicin N. This mechanism of rapid membrane disruption, via receptor mediated binding of a soluble peptide, may reveal a new target for the development of highly specific antibacterials.  相似文献   

17.
Colicin Ia, a channel‐forming bactericidal protein, uses the outer membrane protein, Cir, as its primary receptor. To kill Escherichia coli, it must cross this membrane. The crystal structure of Ia receptor‐binding domain bound to Cir, a 22‐stranded plugged β‐barrel protein, suggests that the plug does not move. Therefore, another pathway is needed for the colicin to cross the outer membrane, but no ‘second receptor’ has ever been identified for TonB‐dependent colicins, such as Ia. We show that if the receptor‐binding domain of colicin Ia is replaced by that of colicin E3, this chimera effectively kills cells, provided they have the E3 receptor (BtuB), Cir, and TonB. This is consistent with wild‐type Ia using one Cir as its primary receptor (BtuB in the chimera) and a second Cir as the translocation pathway for its N‐terminal translocation (T) domain and its channel‐forming C‐terminal domain. Deletion of colicin Ia's receptor‐binding domain results in a protein that kills E. coli, albeit less effectively, provided they have Cir and TonB. We show that purified T domain competes with Ia and protects E. coli from being killed by it. Thus, in addition to binding to colicin Ia's receptor‐binding domain, Cir also binds weakly to its translocation domain.  相似文献   

18.
Zakharov SD  Sharma O  Zhalnina MV  Cramer WA 《Biochemistry》2008,47(48):12802-12809
Cellular import of colicin E3 is initiated by high affinity binding of the colicin receptor-binding (R) domain to the vitamin B(12) (BtuB) receptor in the Escherichia coli outer membrane. The BtuB binding site, at the apex of its extended coiled-coil R-domain, is distant from the C-terminal nuclease domain that must be imported for expression of cytotoxicity. Based on genetic analysis and previously determined crystal structures of the R-domain bound to BtuB, and of an N-terminal disordered segment of the translocation (T) domain inserted into the OmpF porin, a translocon model for colicin import has been inferred. Implicit in the model is the requirement for unfolding of the colicin segments inserted into OmpF. FRET analysis was employed to study colicin unfolding upon interaction with BtuB and OmpF. A novel method of Cys-specific dual labeling of a native polypeptide, which allows precise placement of donor and acceptor fluorescent dyes on the same polypeptide chain, was developed. A decrease in FRET efficiency between the translocation and cytotoxic domains of the colicin E3 was observed upon colicin binding in vitro to BtuB or OmpF. The two events were independent and additive. The colicin interactions with BtuB and OmpF have a major electrostatic component. The R-domain Arg399 is responsible for electrostatic interaction with BtuB. It is concluded that free energy for colicin unfolding is provided by binding of the R- domain to BtuB and binding/insertion of the T-domain to/into OmpF.  相似文献   

19.
Eight reagents specifically modifying amino acids were applied to cells of a standardEscherichia coli colicin indicator strain to followin vivo changes of its binding capacity for colicins E1–E3 and hence the binding domains (epitopes) for them in the outer membrane receptor protein BtuB. The effect of these reagents was also investigated in a mutant strain carrying an extensive BtuB deletion. The following differences of the binding epitopes could be ascertained.Colicin E1: Blockage of OH-groups, just as N-substitution of His and modification of Arg and Trp enhance binding of colicin E1. In the deleted receptor, also abolition of carboxylic anion bonds enhances its affinity for colicin E1. It follows that colicin E1 is bound, most of all, to the hydrophobic domain A (loops 1+2) of BtuB.Colicins E2 and E3: both exert rather analogous binding parameters. In contrast to E1, O-substitution of Ser and Thr dramatically decreases the E2 and E3 binding, similarly to modification of Lys. There is also a clear difference in the binding affinity of the domain for E2 and/or E3 and for E1 following modifications of their Arg and His. Colicins E2 and E3 are rather bound to the hydrophilic domain B (loops 5–7) of the receptor. In this respect, interactions of colicins E2 and E3 with deeper parts of A and B domains (Trp, several Arg, Lys and His residues) exhibited subtle differences. Acidic pH (4.5–6.0) shows a positive, while pH 7.0–8.5 a rather negative impact on the receptor-binding function for the colicins. It was clearly demonstrated that there is just a partial difference between the binding behavior of colicins E1, E2 and/or E3.  相似文献   

20.
Summary Time courses of phlorizin binding to the outside of membrane vesicles from porcine renal outer cortex and outer medulla were measured and the obtained families of binding curves were fitted to different binding models. To fit the experimental data a model with two binding sites was required. Optimal fits were obtained if a ratio of low and high affinity phlorizin binding sites of 1:1 was assumed. Na+ increased the affinity of both binding sites. By an inside-negative membrane potential the affinity of the high affinity binding site (measured in the presence of 3 mM Na+) and of the low affinity binding site (measured in the presence of 3 or 90 mM Na+) was increased. Optimal fits were obtained when the rate constants of dissociation were not changed by the membrane potential. In the presence of 90 mM Na+ on both membrane sides and with a clamped membrane potential,K D values of 0.4 and 7.9 M were calculated for the low and high affinity phlorizin binding sites which were observed in outer cortex and in outer medulla. Apparent low and high affinity transport sites were detected by measuring the substrate dependence ofd-glucose uptake in membrane vesicles from outer cortex and outer medulla which is stimulated by an initial gradient of 90 mM Na+(out>in). Low and high affinity transport could be fitted with identicalK m values in outer cortex and outer medulla. An inside-negative membrane potential decreased the apparentK m ofhigh affinity transport whereas the apparentK m of low affinity transport was not changed. The data show that in outer cortex and outer medulla of pighigh and low affinity Na+-d-glucose cotransporters are present which containlow and high affinity phlorizin binding sites, respectively. It has to be elucidated from future experiments whether equal amounts of low and high affinity transporters are expressed in both kidney regions or whether the low and high affinity transporter are parts of the same glucose transport moleculc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号