首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Ammonia is considered to be the main neurotoxin responsible for hepatic encephalopathy resulting from liver failure. Liver failure has been reported to alter expression and activity of P‐glycoprotein (P‐gp) and multidrug resistance‐associated protein 2 (Mrp2) at the blood–brain barrier (BBB). The aim of this study was to investigate whether ammonia is involved in abnormalities of expression and activity of P‐gp and Mrp2 at the BBB. Hyperammonemic rats were developed by an intraperitoneal injection of ammonium acetate (NH4Ac, 4.5 mmol/kg). Results showed that Mrp2 function markedly increased in cortex and hippocampus of rats at 6 h following NH4Ac administration. Significant increase in function of P‐gp was observed in hippocampus of rats. Meanwhile, such alterations were in line with the increase in mRNA and protein levels of P‐gp and Mrp2. Significant increase in levels of nuclear amount of nuclear factor‐κB (NF‐κB) p65 was also observed. Primarily cultured rat brain microvessel endothelial cells (rBMECs) were used for in vitro study. Data indicated that 24 h exposure to ammonia significantly increased function and expression of P‐gp and Mrp2 in rBMECs, accompanied with activation of NF‐κB. Furthermore, such alterations induced by ammonia were reversed by NF‐κB inhibitor. In conclusion, this study demonstrates that hyperammonemia increases the function and expression of P‐gp and Mrp2 at the BBB via activating NF‐κB pathway.

  相似文献   


6.
Vanishing white matter (VWM) is a recessive neurodegenerative disease caused by mutations in translation initiation factor eIF2B and leading to progressive brain myelin deterioration, secondary axonal damage, and death in early adolescence. Eif2b5R132H/R132H mice exhibit delayed developmental myelination, mild early neurodegeneration and a robust remyelination defect in response to cuprizone‐induced demyelination. In the current study we used Eif2b5R132H/R132H mice for mass‐spectrometry analyses, to follow the changes in brain protein abundance in normal‐ versus cuprizone‐diet fed mice during the remyelination recovery phase. Analysis of proteome profiles suggested that dysregulation of mitochondrial functions, altered proteasomal activity and impaired balance between protein synthesis and degradation play a role in VWM pathology. Consistent with these findings, we detected elevated levels of reactive oxygen species in mutant‐derived primary fibroblasts and reduced 20S proteasome activity in mutant brain homogenates. These observations highlight the importance of tight translational control to precise coordination of processes involved in myelin formation and regeneration and point at cellular functions that may contribute to VWM pathology.

  相似文献   


7.
Parkinson's disease (PD) is an age‐related, neurodegenerative motor disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta and presence of α‐synuclein‐containing protein aggregates. Mutations in the mitochondrial Ser/Thr kinase PTEN‐induced kinase 1 (PINK1) are associated with an autosomal recessive familial form of early‐onset PD. Recent studies have suggested that PINK1 plays important neuroprotective roles against mitochondrial dysfunction by phosphorylating and recruiting Parkin, a cytosolic E3 ubiquitin ligase, to facilitate elimination of damaged mitochondria via autophagy‐lysosomal pathways. Loss of PINK1 in cells and animals leads to various mitochondrial impairments and oxidative stress, culminating in dopaminergic neuronal death in humans. Using a 2‐D polyacrylamide gel electrophoresis proteomics approach, the differences in expressed brain proteome and phosphoproteome between 6‐month‐old PINK1‐deficient mice and wild‐type mice were identified. The observed changes in the brain proteome and phosphoproteome of mice lacking PINK1 suggest that defects in signaling networks, energy metabolism, cellular proteostasis, and neuronal structure and plasticity are involved in the pathogenesis of familial PD.

  相似文献   


8.
Mutations in more than 10 genes are reported to cause familial amyotrophic lateral sclerosis (ALS). Among these genes, optineurin (OPTN) is virtually the only gene that is considered to cause classical ALS by a loss‐of‐function mutation. Wild‐type optineurin (OPTNWT) suppresses nuclear factor‐kappa B (NF‐κB) activity, but the ALS‐causing mutant OPTN is unable to suppress NF‐κB activity. Therefore, we knocked down OPTN in neuronal cells and examined the resulting NF‐κB activity and phenotype. First, we confirmed the loss of the endogenous OPTN expression after siRNA treatment and found that NF‐κB activity was increased in OPTN‐knockdown cells. Next, we found that OPTN knockdown caused neuronal cell death. Then, overexpression of OPTNWT or OPTNE50K with intact NF‐κB‐suppressive activity, but not overexpression of ALS‐related OPTN mutants, suppressed the neuronal death induced by OPTN knockdown. This neuronal cell death was inhibited by withaferin A, which selectively inhibits NF‐κB activation. Lastly, involvement of the mitochondrial proapoptotic pathway was suggested for neuronal death induced by OPTN knockdown. Taken together, these results indicate that inappropriate NF‐κB activation is the pathogenic mechanism underlying OPTN mutation‐related ALS.

  相似文献   


9.
10.
High levels of manganese (Mn) exposure decrease striatal medium spiny neuron (MSN) dendritic length and spine density, but the mechanism(s) are not known. The Huntingtin (HTT) gene has been functionally linked to cortical brain‐derived neurotrophic factor (BDNF) support of striatal MSNs via phosphorylation at serine 421. In Huntington's disease, pathogenic CAG repeat expansions of HTT decrease synthesis and disrupt transport of cortical–striatal BDNF, which may contribute to disease, and Mn is a putative environmental modifier of Huntington's disease pathology. Thus, we tested the hypothesis that changes in MSN dendritic morphology Mn due to exposure are associated with decreased BDNF levels and alterations in Htt protein. We report that BDNF levels are decreased in the striatum of Mn‐exposed non‐human primates and in the cerebral cortex and striatum of mice exposed to Mn. Furthermore, proBDNF and mature BDNF concentrations in primary cortical and hippocampal neuron cultures were decreased by exposure to Mn confirming the in vivo findings. Mn exposure decreased serine 421 phosphorylation of Htt in cortical and hippocampal neurons and increased total Htt levels. These data strongly support the hypothesis that Mn‐exposure‐related MSN pathology is associated with decreased BDNF trophic support via alterations in Htt.

  相似文献   


11.
Frontotemporal lobar degeneration (FTLD) is the second leading cause of dementia in individuals under age 65. In many patients, the predominant pathology includes neuronal cytoplasmic or intranuclear inclusions of ubiquitinated TAR DNA binding protein 43 (FTLD‐TDP). Recently, a genome‐wide association study identified the first FTLD‐TDP genetic risk factor, in which variants in and around the TMEM106B gene (top SNP rs1990622) were significantly associated with FTLD‐TDP risk. Intriguingly, the most significant association was in FTLD‐TDP patients carrying progranulin (GRN) mutations. Here, we investigated to what extent the coding variant, rs3173615 (p.T185S) in linkage disequilibrium with rs1990622, affects progranulin protein (PGRN) biology and transmembrane protein 106 B (TMEM106B) regulation. First, we confirmed the association of TMEM106B variants with FTLD‐TDP in a new cohort of GRN mutation carriers. We next generated and characterized a TMEM106B‐specific antibody for investigation of this protein. Enzyme‐linked immunoassay analysis of progranulin protein levels showed similar effects upon T185 and S185 TMEM106B over‐expression. However, over‐expression of T185 consistently led to higher TMEM106B protein levels than S185. Cycloheximide treatment experiments revealed that S185 degrades faster than T185 TMEM106B, potentially due to differences in N‐glycosylation at residue N183. Together, our results provide a potential mechanism by which TMEM106B variants lead to differences in FTLD‐TDP risk.

  相似文献   


12.
Metabotropic glutamate receptor 5 (mGluR5) regulates excitatory post‐synaptic signaling in the central nervous system (CNS) and is implicated in various CNS disorders. Protein kinase A (PKA) signaling is known to play a critical role in neuropsychiatric disorders such as Parkinson's disease, schizophrenia, and addiction. Dopamine signaling is known to modulate the properties of mGluR5 in a cAMP‐ and PKA‐dependent manner, suggesting that mGluR5 may be a direct target for PKA. Our study identifies mGluR5 at Ser870 as a direct substrate for PKA phosphorylation and demonstrates that this phosphorylation plays a critical role in the PKA‐mediated modulation of mGluR5 functions such as extracellular signal‐regulated kinase phosphorylation and intracellular Ca2+ oscillations. The identification of the molecular mechanism by which PKA signaling modulates mGluR5‐mediated cellular responses contributes to the understanding of the interaction between dopaminergic and glutamatergic neuronal signaling.

  相似文献   


13.
The mechanism by which extracellular molecules control serotonergic cell fate remains elusive. Recently, we showed that noggin, which inactivates bone morphogenetic proteins (BMPs), induces serotonergic differentiation of mouse embryonic (ES) and induced pluripotent stem cells with coordinated gene expression along the serotonergic lineage. Here, we created a rapid assay for serotonergic induction by generating knock‐in ES cells expressing a naturally secreted Gaussia luciferase driven by the enhancer of Pet‐1/Fev, a landmark of serotonergic differentiation. Using these cells, we performed candidate‐based screening and identified BMP type I receptor kinase inhibitors LDN‐193189 and DMH1 as activators of luciferase. LDN‐193189 induced ES cells to express the genes encoding Pet‐1, tryptophan hydroxylase 2, and the serotonin transporter, and increased serotonin release without altering dopamine release. In contrast, TGF‐β receptor inhibitor SB‐431542 selectively inhibited serotonergic differentiation, without changing overall neuronal differentiation. LDN‐193189 inhibited expression of the BMP signaling target gene Id, and induced the TGF‐β target gene Lefty, whereas the opposite effect was observed with SB‐431542. This study thus provides a new tool to investigate serotonergic differentiation and suggests that inhibition of BMP type I receptors and concomitant activation of TGF‐β receptor signaling are implicated in serotonergic differentiation.

  相似文献   


14.
15.
Leucine‐rich repeat transmembrane proteins (LRRTMs) are single‐spanning transmembrane proteins that belong to the family of synaptically localized adhesion molecules that play various roles in the formation, maturation, and function of synapses. LRRTMs are highly localized in the post‐synaptic density; however, the mechanisms and significance of LRRTM synaptic clustering remain unclear. Here, we focus on the intracellular domain of LRRTMs and investigate its role in cell surface expression and synaptic clustering. The deletion of 55–56 residues in the cytoplasmic tail caused significantly reduced synaptic clustering of LRRTM1–4 in rat hippocampal neurons, whereas it simultaneously resulted in augmented LRRTM1–2 cell surface expression. A series of deletions and further single amino acid substitutions in the intracellular domain of LRRTM2 demonstrated that a previously uncharacterized sequence at the region of ‐16 to ‐13 from the C‐terminus was responsible for efficient synaptic clustering and proper cell surface trafficking of LRRTMs. Furthermore, the clustering‐deficient LRRTM2 mutant lost the ability to promote the accumulation of post‐synaptic density protein‐95 (PSD‐95). These results suggest that trafficking to the cell surface and synaptic clustering of LRRTMs are regulated by a specific mechanism through this novel sequence in the intracellular domain that underlies post‐synaptic molecular assembly and maturation.

  相似文献   


16.
17.
Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase‐9 (MMP‐9) activity in the ischemic brain, which exacerbates blood‐brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP‐9 activity is not well understood. Here we report an important role of caveolin‐1 in mediating tPA‐induced MMP‐9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 μg/ml tPA for 24 hrs before analyzing MMP‐9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 μg/mL tPA, but not 5 μg/mL, significantly increased MMP‐9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3‐fold increase of caveolin‐1 protein levels in endothelial cells. Interestingly, knockdown of Cav‐1 with siRNA inhibited tPA‐induced MMP‐9 mRNA up‐regulation and MMP‐9 increase in the conditioned media, but did not affect MMP‐9 decrease in cellular extracts. These results suggest that caveolin‐1 critically contributes to tPA‐mediated MMP‐9 up‐regulation, but may not facilitate MMP‐9 secretion in endothelial cells.

  相似文献   


18.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an efficient neurosurgical treatment for advanced Parkinson's disease. Non‐invasive metabolic neuroimaging during the course of DBS in animal models may contribute to our understanding of its action mechanisms. Here, DBS was adapted to in vivo proton magnetic resonance spectroscopy at 11.7 T in the rat to follow metabolic changes in main basal ganglia structures, the striatum, and the substantia nigra pars reticulata (SNr). Measurements were repeated OFF and ON acute and subchronic (7 days) STN‐DBS in control and parkinsonian (6‐hydroxydopamine lesion) conditions. Acute DBS reversed the increases in glutamate, glutamine, and GABA levels induced by the dopamine lesion in the striatum but not in the SNr. Subchronic DBS normalized GABA in both the striatum and SNr, and glutamate in the striatum. Taurine levels were markedly decreased under subchronic DBS in the striatum and SNr in both lesioned and unlesioned rats. Microdialysis in the striatum further showed that extracellular taurine was increased. These data reveal that STN‐DBS has duration‐dependent metabolic effects in the basal ganglia, consistent with development of adaptive mechanisms. In addition to counteracting defects induced by the dopamine lesion, prolonged DBS has proper effects independent of the pathological condition.

  相似文献   


19.
Significant progress in elucidating the genetic etiology of anxiety and depression has been made during the last decade through a combination of human and animal studies. In this study, we aimed to discover genetic loci linked with anxiety as well as depression in order to reveal new candidate genes. Therefore, we initially tested the behavioral sensitivity of 543 F2 animals derived from an intercross of C57BL/6J and C3H/HeJ mice in paradigms for anxiety and depression. Next, all animals were genotyped with 269 microsatellite markers with a mean distance of 5.56 cM. Finally, a Quantitative Trait Loci (QTL) analysis was carried out, followed by selection of candidate genes. The QTL analysis revealed several new QTL on chromosome 5 with a common core interval of 19 Mb. We further narrowed this interval by comparative genomics to a region of 15 Mb. A database search and gene prioritization revealed Enoph1 as the most significant candidate gene on the prioritization list for anxiety and also for depression fulfilling our selection criteria. The Enoph1 gene, which is involved in polyamine biosynthesis, is differently expressed in parental strains, which have different brain spermidine levels and show distinct anxiety and depression‐related phenotype. Our result suggests a significant role in polyamines in anxiety and depression‐related behaviors.

  相似文献   


20.
The discoveries of mutations in SNCA were seminal findings that resulted in the knowledge that α‐synuclein (αS) is the major component of Parkinson's disease‐associated Lewy bodies. Since the pathologic roles of these protein inclusions and SNCA mutations are not completely established, we characterized the aggregation properties of the recently identified SNCA mutations, H50Q and G51D, to provide novel insights. The properties of recombinant H50Q, G51D, and wild‐type αS to polymerize and aggregate into amyloid were studied using (trans,trans)‐1‐bromo‐2,5‐bis‐(4‐hydroxy)styrylbenzene fluorometry, sedimentation analyses, electron microscopy, and atomic force microscopy. These studies showed that the H50Q mutation increases the rate of αS aggregation, whereas the G51D mutation has the opposite effect. However, H50Q and G51D αS could still be similarly induced to form intracellular aggregates from the exposure to exogenous amyloidogenic seeds under conditions that promote their cellular entry. Both mutant αS proteins, but especially G51D, promoted cellular toxicity under cellular stress conditions. These findings reveal that the novel pathogenic SNCA mutations, H50Q and G51D, have divergent effects on aggregation properties relative to the wild‐type protein, with G51D αS demonstrating reduced aggregation despite presenting with earlier disease onset, suggesting that these mutants promote different mechanisms of αS pathogenesis.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号