首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetrahedral (TET) aminopeptidases are large polypeptide destruction machines present in prokaryotes and eukaryotes. Here, the rules governing their assembly into hollow 12-subunit tetrahedrons are addressed by using TET2 from Pyrococcus horikoshii (PhTET2) as a model. Point mutations allowed the capture of a stable, catalytically active precursor. Small angle x-ray scattering revealed that it is a dimer whose architecture in solution is identical to that determined by x-ray crystallography within the fully assembled TET particle. Small angle x-ray scattering also showed that the reconstituted PhTET2 dodecameric particle displayed the same quaternary structure and thermal stability as the wild-type complex. The PhTET2 assembly intermediates were characterized by analytical ultracentrifugation, native gel electrophoresis, and electron microscopy. They revealed that PhTET2 assembling is a highly ordered process in which hexamers represent the main intermediate. Peptide degradation assays demonstrated that oligomerization triggers the activity of the TET enzyme toward large polypeptidic substrates. Fractionation experiments in Pyrococcus and Halobacterium cells revealed that, in vivo, the dimeric precursor co-exists together with assembled TET complexes. Taken together, our observations explain the biological significance of TET oligomerization and suggest the existence of a functional regulation of the dimer-dodecamer equilibrium in vivo.  相似文献   

2.
The structure of a 468 kDa peptidase complex from the hyperthermophile Pyrococcus horikoshii has been solved at 1.9 Å resolution. The monomer contains the M42 peptidase typical catalytic domain, and a dimerization domain that allows the formation of dimers that assemble as a 12-subunit self-compartmentalized tetrahedron, similar to those described for the TET peptidases. The biochemical analysis shows that the enzyme is cobalt-activated and cleaves peptides by a non-processive mechanism. Consequently, this protein represents the third TET peptidase complex described in P. horikoshii , thereby called PhTET3. It is a lysyl aminopeptidase with a strong preference for basic residues, which are poorly cleaved by PhTET1 and PhTET2. The structural analysis of PhTET3 and its comparison with PhTET1 and PhTET2 unravels common features explaining the general mode of action of the TET molecular machines as well as differences that can be associated with strong substrate discriminations. The question of the stability of the TET assemblies under extreme temperatures has been addressed. PhTET3 displays its maximal activity at 95°C and small-angle neutron scattering experiments at 90°C demonstrate the absence of quaternary structure alterations after extensive incubation times. In conclusion, PhTETs are complementary peptide destruction machines that may play an important role in the metabolism of P. horikoshii .  相似文献   

3.
The TET proteases from Pyrococcus horikoshii are metallopeptidases that form large dodecameric particles with high thermal stability. The influence of various physico-chemical parameters on PhTET3 quaternary structure was investigated. Analytical ultracentrifugation and biochemical analyses showed that the PhTET3 quaternary structure and enzymatic activity are maintained in high salt and that the complex is stable under extreme acidic conditions. Under basic pH conditions the complex disassembled into a low molecular weight species that was identified as folded dimer. Metal analyses showed that the purified enzyme only contains two equivalent of zinc per monomer, corresponding to the metal ions responsible for catalytic activity. When these metals were removed by EDTA treatment, the complex dissociated into the same dimeric species as those observed at high pH. Dodecameric TET particles were obtained from the metal free dimers when 2mM of divalent ions were added to the protein samples. Most of the dimers remained assembled at high temperature. Thus, we have shown that dimers are the building units in the TET oligomerization pathway and that the active site metals are essential in this process.  相似文献   

4.
5.
Cellular proteolysis involves large oligomeric peptidases that play key roles in the regulation of many cellular processes. The cobalt-activated peptidase TET1 from the hyperthermophilic Archaea Pyrococcus horikoshii (PhTET1) was found to assemble as a 12-subunit tetrahedron and as a 24-subunit octahedral particle. Both quaternary structures were solved by combining x-ray crystallography and cryoelectron microscopy data. The internal organization of the PhTET1 particles reveals highly self-compartmentalized systems made of networks of access channels extended by vast catalytic chambers. The two edifices display aminopeptidase activity, and their organizations indicate substrate navigation mechanisms different from those described in other large peptidase complexes. Compared with the tetrahedron, the octahedron forms a more expanded hollow structure, representing a new type of giant peptidase complex. PhTET1 assembles into two different quaternary structures because of quasi-equivalent contacts that previously have only been identified in viral capsids.  相似文献   

6.
7.
8.
MCOLN1 encodes mucolipin‐1 (TRPML1), a member of the transient receptor potential TRPML subfamily of channel proteins. Mutations in MCOLN1 cause mucolipidosis‐type IV (MLIV), a lysosomal storage disorder characterized by severe neurologic, ophthalmologic, and gastrointestinal abnormalities. Along with TRPML1, there are two other TRPML family members, mucolipin‐2 (TRPML2) and mucolipin‐3 (TRPML3). In this study, we used immunocytochemical analysis to determine that TRPML1, TRPML2, and TRPML3 co‐localize in cells. The multimerization of TRPML proteins was confirmed by co‐immunoprecipitation and Western blot analysis, which demonstrated that TRPML1 homo‐multimerizes as well as hetero‐multimerizes with TRPML2 and TRPML3. MLIV‐causing mutants of TRPML1 also interacted with wild‐type TRPML1. Lipid bilayer re‐constitution of in vitro translated TRPML2 and TRPML3 confirmed their cation channel properties with lower single channel conductance and higher partial permeability to anions as compared to TRPML1. We further analyzed the electrophysiological properties of single channel TRPML hetero‐multimers, which displayed functional differences when compared to individual TRPMLs. Our data shows for the first time that TRPMLs form distinct functional channel complexes. Homo‐ and hetero‐multimerization of TRPMLs may modulate channel function and biophysical properties, thereby increasing TRPML functional diversity. J. Cell. Physiol. 222: 328–335, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Pyrococcus horikoshii open reading frame PH1527 encodes a 39014 Da protein that shares about 30% identity with endoglucanases and members of the M42 peptidase family. Analytical ultracentrifugation and electron microscopy studies showed that the purified recombinant protein forms stable, large dodecameric complexes with a tetrahedral shape similar to the one described for DAP, a deblocking aminopeptidase that was characterized in the same organism. The two related proteins were named PhTET1 (for DAP) and PhTET2 (for PH1527). The substrate specificity and the mode of action of the PhTET2 complex were studied in detail and compared to those of PhTET1 and other assigned M42 peptidases. When assayed with short chromogenic peptides, PhTET2 was found to be an aminopeptidase, with a clear preference for leucine as the N-terminal amino acid. However, the enzyme can cleave moderately long polypeptide substrates of various compositions in a fairly unspecific manner. The hydrolytic mechanism was found to be nonprocessive. The enzyme has neither carboxypeptidase nor endoproteolytic activities, and it is devoid of N-terminal deblocking activity. PhTET2 was inhibited in the presence of EDTA and bestatin, and cobalt was found to be an activating metal. The PhTET2 protein is a highly thermostable enzyme that displays optimal activity around 100 degrees C over a broad pH array.  相似文献   

10.
The chloroplast chaperonin system is indispensable for the biogenesis of Rubisco, the key enzyme in photosynthesis. Using Chlamydomonas reinhardtii as a model system, we found that in vivo the chloroplast chaperonin consists of CPN60α, CPN60β1 and CPN60β2 and the co‐chaperonin of the three subunits CPN20, CPN11 and CPN23. In Escherichia coli, CPN20 homo‐oligomers and all possible other chloroplast co‐chaperonin hetero‐oligomers are functional, but only that consisting of CPN11/20/23‐CPN60αβ1β2 can fully replace GroES/GroEL under stringent stress conditions. Endogenous CPN60 was purified and its stoichiometry was determined to be 6:2:6 for CPN60α:CPN60β1:CPN60β2. The cryo‐EM structures of endogenous CPN60αβ1β2/ADP and CPN60αβ1β2/co‐chaperonin/ADP were solved at resolutions of 4.06 and 3.82 Å, respectively. In both hetero‐oligomeric complexes the chaperonin subunits within each ring are highly symmetric. Through hetero‐oligomerization, the chloroplast co‐chaperonin CPN11/20/23 forms seven GroES‐like domains, which symmetrically interact with CPN60αβ1β2. Our structure also reveals an uneven distribution of roof‐forming domains in the dome‐shaped CPN11/20/23 co‐chaperonin and potentially diversified surface properties in the folding cavity of the CPN60αβ1β2 chaperonin that might enable the chloroplast chaperonin system to assist in the folding of specific substrates.  相似文献   

11.
Ten-eleven translocation (TET) family enzymes convert 5-methylcytosine to 5-hydroxylmethylcytosine. However, the molecular mechanism that regulates this biological process is not clear. Here, we show the evidence that PGC7 (also known as Dppa3 or Stella) interacts with TET2 and TET3 both in vitro and in vivo to suppress the enzymatic activity of TET2 and TET3. Moreover, lacking PGC7 induces the loss of DNA methylation at imprinting loci. Genome-wide analysis of PGC7 reveals a consensus DNA motif that is recognized by PGC7. The CpG islands surrounding the PGC7-binding motifs are hypermethylated. Taken together, our study demonstrates a molecular mechanism by which PGC7 protects DNA methylation from TET family enzyme-dependent oxidation.  相似文献   

12.
Plant resistance proteins of the class of nucleotide‐binding and leucine‐rich repeat domain proteins (NB‐LRRs) are immune sensors which recognize pathogen‐derived molecules termed avirulence (AVR) proteins. We show that RGA4 and RGA5, two NB‐LRRs from rice, interact functionally and physically to mediate resistance to the fungal pathogen Magnaporthe oryzae and accomplish different functions in AVR recognition. RGA4 triggers an AVR‐independent cell death that is repressed in the presence of RGA5 in both rice protoplasts and Nicotiana benthamiana. Upon recognition of the pathogen effector AVR‐Pia by direct binding to RGA5, repression is relieved and cell death occurs. RGA4 and RGA5 form homo‐ and hetero‐complexes and interact through their coiled‐coil domains. Localization studies in rice protoplast suggest that RGA4 and RGA5 localize to the cytosol. Upon recognition of AVR‐Pia, neither RGA4 nor RGA5 is re‐localized to the nucleus. These results establish a model for the interaction of hetero‐pairs of NB‐LRRs in plants: RGA4 mediates cell death activation, while RGA5 acts as a repressor of RGA4 and as an AVR receptor.  相似文献   

13.
The Tat protein export system translocates folded proteins across the bacterial cytoplasmic membrane and the plant thylakoid membrane. The Tat system in Escherichia coli is composed of TatA, TatB and TatC proteins. TatB and TatC form an oligomeric, multivalent receptor complex that binds Tat substrates, while multiple protomers of TatA assemble at substrate‐bound TatBC receptors to facilitate substrate transport. We have addressed whether oligomerisation of TatC is an absolute requirement for operation of the Tat pathway by screening for dominant negative alleles of tatC that inactivate Tat function in the presence of wild‐type tatC. Single substitutions that confer dominant negative TatC activity were localised to the periplasmic cap region. The variant TatC proteins retained the ability to interact with TatB and with a Tat substrate but were unable to support the in vivo assembly of TatA complexes. Blue‐native PAGE analysis showed that the variant TatC proteins produced smaller TatBC complexes than the wild‐type TatC protein. The substitutions did not alter disulphide crosslinking to neighbouring TatC molecules from positions in the periplasmic cap but abolished a substrate‐induced disulphide crosslink in transmembrane helix 5 of TatC. Our findings show that TatC functions as an obligate oligomer.  相似文献   

14.
《Epigenetics》2013,8(2):201-207
TET2 enzymatically converts 5-methyl-cytosine to 5-hydroxymethyl-cytosine, possibly leading to loss of DNA methylation. TET2 mutations are common in myeloid leukemia and were proposed to contribute to leukemogenesis through DNA methylation. To expand on this concept, we studied chronic myelomonocytic leukemia (CMML) samples. TET2 missense or nonsense mutations were detected in 53% (16/30) of patients. In contrast, only 1/30 patient had a mutation in IDH1 or IDH2, and none of them had a mutation in DNMT3A in the sites most frequently mutated in leukemia. Using bisulfite pyrosequencing, global methylation measured by the LINE-1 assay and DNA methylation levels of 10 promoter CpG islands frequently abnormal in myeloid leukemia were not different between TET2 mutants and wild-type CMML cases. This was also true for 9 out of 11 gene promoters reported by others as differentially methylated by TET2 mutations. We found that two non-CpG island promoters, AIM2 and SP140, were hypermethylated in patients with mutant TET2. These were the only two gene promoters (out of 14,475 genes) previously found to be hypermethylated in TET2 mutant cases. However, total 5-methyl-cytosine levels in TET2 mutant cases were significantly higher than TET2 wild-type cases (median = 14.0% and 9.8%, respectively) (p = 0.016). Thus, TET2 mutations affect global methylation in CMML but most of the changes are likely to be outside gene promoters.  相似文献   

15.
During its life cycle Mycobacterium tuberculosis (MTB) must face a variety of environmental and endogenous physical and chemical stresses that could produce genotoxic damage. However, MTB possesses efficient systems to counteract the harmful effects of DNA‐damaging assaults. The nucleotide excision repair (NER) is a highly conserved multi‐enzymatic cascade that is initiated by the concerted action of three core proteins, that is UvrA, UvrB, and UvrC. Although the functional roles of these enzymes are well characterized, the intra‐pathway coordination of the NER components and the dynamics of their association is still a matter of debate. In the presented study, we analyzed the hydrodynamic properties and the oligomeric state of the MTB UvrB protein (MtUvrB) that we expressed and purified to homogeneity in a tag‐free form. Our results show that, differently to what has been previously observed for the His‐tagged version of the protein, MtUvrB forms dimers in solution, which are characterized by an elongated shape, as determined by small‐angle X‐ray scattering analysis. Moreover, to gain insights into the mycobacterial UvrA/UvrB lesion sensing/tracking complex we adopted a size‐exclusion chromatography‐based approach, revealing that the two proteins interact in the absence of ligands, leading to the assembling of A2B2 hetero‐tetramers in solution. Surface plasmon resonance analysis showed that the dissociation constant of the MtUvrA/MtUvrB complex falls in the low micromolar range that could represent the basis for a fine modulation of the complex architecture accompanying the multi‐step DNA repair activity of mycobacterial NER.  相似文献   

16.
The methylcytosine dioxygenases TET proteins (TET1, TET2, and TET3) play important regulatory roles in neural function. In this study, we investigated the role of TET proteins in neuronal differentiation using Neuro2a cells as a model. We observed that knockdown of TET1, TET2 or TET3 promoted neuronal differentiation of Neuro2a cells, and their overexpression inhibited VPA (valproic acid)-induced neuronal differentiation, suggesting all three TET proteins negatively regulate neuronal differentiation of Neuro2a cells. Interestingly, the inducing activity of TET protein is independent of its enzymatic activity. Our previous studies have demonstrated that srGAP3 can negatively regulate neuronal differentiation of Neuro2a cells. Furthermore, we revealed that TET1 could positively regulate srGAP3 expression independent of its catalytic activity, and srGAP3 is required for TET-mediated neuronal differentiation of Neuro2a cells. The results presented here may facilitate better understanding of the role of TET proteins in neuronal differentiation, and provide a possible therapy target for neuroblastoma.  相似文献   

17.
It has been reported that one of the hyperthermostable aminopeptidases from Pyrococcus horikoshii exhibits hydrolytic activity toward short peptides and acyl-peptides (deblocking activity). In the genome database of P. horikoshii, two new open reading frames homologous to the hyperthermostable aminopeptidase of P. horikoshii were found. The two new genes for the proteins were cloned, expressed using E. coli, and characterized. The purified proteins gave a single band on SDS-PAGE corresponding to molecular masses of 42 kDa and 41 kDa respectively, and exhibited aminopeptidase activity, including deblocking activity. These enzymes are likely to exist as oligomeric structures at neutral pH. The optimum pHs of the two enzyme activities were in the range of 7.0 to 7.5, and the optimum temperatures for the activities were around 100 °C. The enzymes exhibited low hydrolytic activity for peptide substrates longer than 10 residues. They were activated by cobalt and zinc ions. Their substrate specificities and activation factors are different. It was confirmed that P. horikoshii has three similar aminopeptidases with deblocking activity and that these enzymes appear to play important roles in hydrolyzing small peptides in P. horikoshii cells.  相似文献   

18.
19.
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in two genes, PKD1 and PKD2, which encode polycystin‐1 (PC1) and polycystin‐2 (PC2), respectively. Earlier work has shown that PC1 and PC2 assemble into a polycystin complex implicated in kidney morphogenesis. PC2 also assembles into homomers of uncertain functional significance. However, little is known about the molecular mechanisms that direct polycystin complex assembly and specify its functions. We have identified a coiled coil in the C‐terminus of PC2 that functions as a homodimerization domain essential for PC1 binding but not for its self‐oligomerization. Dimerization‐defective PC2 mutants were unable to reconstitute PC1/PC2 complexes either at the plasma membrane (PM) or at PM‐endoplasmic reticulum (ER) junctions but could still function as ER Ca2+‐release channels. Expression of dimerization‐defective PC2 mutants in zebrafish resulted in a cystic phenotype but had lesser effects on organ laterality. We conclude that C‐terminal dimerization of PC2 specifies the formation of polycystin complexes but not formation of ER‐localized PC2 channels. Mutations that affect PC2 C‐terminal homo‐ and heteromerization are the likely molecular basis of cyst formation in ADPKD.  相似文献   

20.
Voltage‐dependent anion channel 1 (VDAC1), which is located in the outer mitochondrial membrane, plays important roles in various cellular processes. For example, oligomerization of VDAC1 is involved in the release of cytochrome c to the cytoplasm, leading to apoptosis. However, it is unknown how VDAC1 oligomerization occurs in the membrane. In the present study, we determined high‐resolution crystal structures of oligomeric human VDAC1 (hVDAC1) prepared by using an Escherichia coli cell‐free protein synthesis system, which avoided the need for denaturation and refolding of the protein. Broad‐range screening using a bicelle crystallization method produced crystals in space groups C222 and P22121, which diffracted to a resolution of 3.10 and 3.15 Å, respectively. Each crystal contained two hVDAC1 protomers in the asymmetric unit. Dimer within the asymmetrical unit of the crystal in space group C222 were oriented parallel, whereas those of the crystal in space group P22121 were oriented anti‐parallel. From a model of the crystal in space group C222, which we constructed by using crystal symmetry operators, a heptameric structure with eight patterns of interaction between protomers, including hydrophobic interactions with β‐strands, hydrophilic interactions with loop regions, and protein–lipid interactions, was observed. It is possible that by having multiple patterns of interaction, VDAC1 can form homo‐ or hetero‐oligomers not only with other VDAC1 protomers but also with other proteins such as VDAC2, VDAC3 and apoptosis‐regulating proteins in the Bcl‐2 family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号