首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Leucine‐rich repeat transmembrane proteins (LRRTMs) are single‐spanning transmembrane proteins that belong to the family of synaptically localized adhesion molecules that play various roles in the formation, maturation, and function of synapses. LRRTMs are highly localized in the post‐synaptic density; however, the mechanisms and significance of LRRTM synaptic clustering remain unclear. Here, we focus on the intracellular domain of LRRTMs and investigate its role in cell surface expression and synaptic clustering. The deletion of 55–56 residues in the cytoplasmic tail caused significantly reduced synaptic clustering of LRRTM1–4 in rat hippocampal neurons, whereas it simultaneously resulted in augmented LRRTM1–2 cell surface expression. A series of deletions and further single amino acid substitutions in the intracellular domain of LRRTM2 demonstrated that a previously uncharacterized sequence at the region of ‐16 to ‐13 from the C‐terminus was responsible for efficient synaptic clustering and proper cell surface trafficking of LRRTMs. Furthermore, the clustering‐deficient LRRTM2 mutant lost the ability to promote the accumulation of post‐synaptic density protein‐95 (PSD‐95). These results suggest that trafficking to the cell surface and synaptic clustering of LRRTMs are regulated by a specific mechanism through this novel sequence in the intracellular domain that underlies post‐synaptic molecular assembly and maturation.

  相似文献   


2.
3.
Striatal neurodegeneration and synaptic dysfunction in Huntington's disease are mediated by the mutant huntingtin (mHtt) protein. MHtt disrupts calcium homeostasis and facilitates excitotoxicity, in part by altering NMDA receptor (NMDAR) trafficking and function. Pre‐symptomatic (excitotoxin‐sensitive) transgenic mice expressing full‐length human mHtt with 128 polyglutamine repeats (YAC128 Huntington's disease mice) show increased calpain activity and extrasynaptic NMDAR (Ex‐NMDAR) localization and signaling. Furthermore, Ex‐NMDAR stimulation facilitates excitotoxicity in wild‐type cortical neurons via calpain‐mediated cleavage of STriatal‐Enriched protein tyrosine Phosphatase 61 (STEP61). The cleavage product, STEP33, cannot dephosphorylate p38 mitogen‐activated protein kinase (MAPK), thereby augmenting apoptotic signaling. Here, we show elevated extrasynaptic calpain‐mediated cleavage of STEP61 and p38 phosphorylation, as well as STEP61 inactivation and reduced extracellular signal‐regulated protein kinase 1/2 phosphorylation (ERK1/2) in the striatum of 6‐week‐old, excitotoxin‐sensitive YAC128 mice. Calpain inhibition reduced basal and NMDA‐induced STEP61 cleavage. However, basal p38 phosphorylation was normalized by a peptide disrupting NMDAR‐post‐synaptic density protein‐95 (PSD‐95) binding but not by calpain inhibition. In 1‐year‐old excitotoxin‐resistant YAC128 mice, STEP33 levels were not elevated, but STEP61 inactivation and p38 and ERK 1/2 phosphorylation levels were increased. These results show that in YAC128 striatal tissue, enhanced NMDAR–PSD‐95 interactions contributes to elevated p38 signaling in early, excitotoxin‐sensitive stages, and suggest that STEP61 inactivation enhances MAPK signaling at late, excitotoxin‐resistant stages.

  相似文献   


4.
The mammalian target of rapamycin (mTOR) signalling cascade is involved in the intracellular regulation of protein synthesis, specifically for proteins involved in controlling neuronal morphology and facilitating synaptic plasticity. Research has revealed that the activity of the mTOR cascade is influenced by several extracellular and environmental factors that have been implicated in schizophrenia. Therefore, there is reason to believe that one of the downstream consequences of dysfunction or hypofunction of these factors in schizophrenia is disrupted mTOR signalling and hence impaired protein synthesis. This results in abnormal neurodevelopment and deficient synaptic plasticity, outcomes which could underlie some of the positive, negative and cognitive symptoms of schizophrenia. This review will discuss the functional roles of the mTOR cascade and present evidence in support of a novel mTOR‐based hypothesis of the neuropathology of schizophrenia.

  相似文献   


5.
Radiotherapy is the major treatment modality for primary and metastatic brain tumors which involves the exposure of brain to ionizing radiation. Ionizing radiation can induce various detrimental pathophysiological effects in the adult brain, and Alzheimer's disease and related neurodegenerative disorders are considered to be late effects of radiation. In this study, we investigated whether ionizing radiation causes changes in tau phosphorylation in cultured primary neurons similar to that in Alzheimer's disease. We demonstrated that exposure to 0.5 or 2 Gy γ rays causes increased phosphorylation of tau protein at several phosphorylation sites in a time‐ and dose‐dependent manner. Consistently, we also found ionizing radiation causes increased activation of GSK3β, c‐Jun N‐terminal kinase and extracellular signal‐regulated kinase before radiation‐induced increase in tau phosphorylation. Specific inhibitors of these kinases almost fully blocked radiation‐induced tau phosphorylation. Our studies further revealed that oxidative stress plays an important role in ionizing radiation‐induced tau phosphorylation, likely through the activation of c‐Jun N‐terminal kinase and extracellular signal‐regulated kinase, but not GSK3β. Overall, our studies suggest that ionizing radiation may cause increased risk for development of Alzheimer's disease by promoting abnormal tau phosphorylation.

  相似文献   


6.
7.
Insulin receptor (IR) in the brain plays a role in synaptic plasticity and cognitive functions. Phosphorylation of α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid (AMPA) receptors GluR1 subunit at Serine 831 is regulated by calcium–calmodulin‐dependent protein kinase II and protein kinase C that underlie long‐term potentiation and learning/memory. Recent studies have shown that the novel Protein Kinase M zeta (PKMζ) underlies synaptic plasticity and may regulate AMPAr. In this study, we show that insulin induces phosphorylation of Serine 831 GluR1 subunit of AMPAr and induces over‐expression of PKMζ; pre‐treatment with either the IR inhibitor 3‐Bromo‐5‐t‐butyl‐4‐hydroxy‐benzylidenemalonitrile (AG1024) or PKMζ inhibitor protein kinase C zeta pseudo‐substrate inhibitor returned the phosphorylation value of GluR1 to control level. Amyloid beta (Aβ) peptide in the form of oligomers interferes with IR signaling. Pre‐treating neuronal cultures with Aβ following incubation with insulin, we found a reduction of insulin‐dependent PKMζ over‐expression and MAPK/Erk (1/2) phosphorylation, i.e., signaling pathways involved in synaptic plasticity and learning/memory. These results indicate a new intracellular insulin signaling pathway, and, additionally, that insulin resistance in Alzheimer's disease is a response to the production and accumulation of Aβ.

  相似文献   


8.
9.
Protein aggregation is a common feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. How protein aggregates are formed and contribute to neurodegeneration, however, is not clear. Mutation of Ubiquilin 2 (UBQLN2) has recently been linked to ALS and frontotemporal lobar degeneration. Therefore, we examined the effect of ALS‐linked UBQLN2 mutation on endoplasmic reticulum‐associated protein degradation (ERAD). Compared to its wild‐type counterpart, mutated UBQLN2 caused greater accumulation of the ERAD substrate Hong Kong variant of α‐1‐antitrypsin, although ERAD was disturbed by both UBQLN2 over‐expression and knockdown. Also, UBQLN2 interacted with ubiquitin regulatory X domain‐containing protein 8 (UBXD8) in vitro and in vivo, and this interaction was impaired by pathogenic mutation of UBQLN2. As UBXD8 is an endoplasmic membrane protein involved in the translocation of ubiquitinated ERAD substrates, UBQLN2 likely cooperates with UBXD8 to transport defective proteins from the endoplasmic reticulum to the cytosol for degradation, and this cell‐protective function is disturbed by pathogenic mutation of UBQLN2.

  相似文献   


10.
It is essential to study the molecular architecture of post‐synaptic density (PSD ) to understand the molecular mechanism underlying the dynamic nature of PSD , one of the bases of synaptic plasticity. A well‐known model for the architecture of PSD of type I excitatory synapses basically comprises of several scaffolding proteins (scaffold protein model). On the contrary, ‘PSD lattice’ observed through electron microscopy has been considered a basic backbone of type I PSD s. However, major constituents of the PSD lattice and the relationship between the PSD lattice and the scaffold protein model, remain unknown. We purified a PSD lattice fraction from the synaptic plasma membrane of rat forebrain. Protein components of the PSD lattice were examined through immuno‐gold negative staining electron microscopy. The results indicated that tubulin, actin, α‐internexin, and Ca2+/calmodulin‐dependent kinase II are major constituents of the PSD lattice, whereas scaffold proteins such as PSD ‐95, SAP 102, GKAP , Shank1, and Homer, were rather minor components. A similar structure was also purified from the synaptic plasma membrane of forebrains from 7‐day‐old rats. On the basis of this study, we propose a ‘PSD lattice‐based dynamic nanocolumn’ model for PSD molecular architecture, in which the scaffold protein model and the PSD lattice model are combined and an idea of dynamic nanocolumn PSD subdomain is also included. In the model, cytoskeletal proteins, in particular, tubulin, actin, and α‐internexin, may play major roles in the construction of the PSD backbone and provide linker sites for various PSD scaffold protein complexes/subdomains.

  相似文献   

11.
12.
Diet supplementation with ketone bodies (acetoacetate and β‐hydroxybuturate) or medium‐length fatty acids generating ketone bodies has consistently been found to cause modest improvement of mental function in Alzheimer's patients. It was suggested that the therapeutic effect might be more pronounced if treatment was begun at a pre‐clinical stage of the disease instead of well after its manifestation. The pre‐clinical stage is characterized by decade‐long glucose hypometabolism in brain, but ketone body metabolism is intact even initially after disease manifestation. One reason for the impaired glucose metabolism may be early destruction of the noradrenergic brain stem nucleus, locus coeruleus, which stimulates glucose metabolism, at least in astrocytes. These glial cells are essential in Alzheimer pathogenesis. The β‐amyloid peptide Aβ interferes with their cholinergic innervation, which impairs synaptic function because of diminished astrocytic glutamate release. Aβ also reduces glucose metabolism and causes hyperexcitability. Ketone bodies are similarly used against seizures, but the effectively used concentrations are so high that they must interfere with glucose metabolism and de novo synthesis of neurotransmitter glutamate, reducing neuronal glutamatergic signaling. The lower ketone body concentrations used in Alzheimer's disease may owe their effect to support of energy metabolism, but might also inhibit release of gliotransmitter glutamate.

  相似文献   


13.
Bisphenol‐A (BPA) has the capability of interfering with the effects of estrogens on modulating brain function. The purpose of this study was to investigate the effects of BPA on memory and synaptic modification in the hippocampus of female mice under different levels of cycling estrogen. BPA exposure (40, 400 μg/kg/day) for 8 weeks did not affect spatial memory and passive avoidance task of gonadally intact mice but improved ovariectomy (Ovx)‐induced memory impairment, whereas co‐exposure of BPA with estradiol benzoate (EB) diminished the rescue effect of EB on memory behavior of Ovx mice. The results of morphometric measurement showed that BPA positively modified the synaptic interface structure and increased the synaptic density of CA1 pyramidal cell in the hippocampus of Ovx females, but inhibited the enhancement of EB on synaptic modification and synaptogenesis of Ovx mice. Furthermore, BPA up‐regulated synaptic proteins synapsin I and PSD‐95 and NMDA receptor NR2B but inhibited EB‐induced increase in PSD‐95 and NR2B in the hippocampus of Ovx mice. These results suggest that BPA interfered with normal hormonal regulation in synaptic plasticity and memory of female mice as a potent estrogen mimetic and as a disruptor of estrogen under various concentrations of cycling estrogen.

  相似文献   


14.
Dysregulated metabolism and consequent extracellular accumulation of amyloid‐β (Aβ) peptides in the brain underlie the pathogenesis of Alzheimer's disease. Extracellular Aβ in the brain parenchyma is mainly secreted from the pre‐synaptic terminals of neuronal cells in a synaptic activity‐dependent manner. The p24 family member p24α2 reportedly attenuates Aβ generation by inhibiting γ‐secretase processing of amyloid precursor protein; however, the pattern of expression and localization of p24α2 in the brain remains unknown. We performed immunohistochemical staining and subcellular fractionation for p24α2 in the mouse brain. Immunostaining showed that p24α2 is broadly distributed in the gray matter of the central nervous system and is predominantly localized to synapses. Subcellular fractionation revealed prominent localization of p24α2 in the pre‐synaptic terminals. Immunoisolation of synaptic vesicles (SV) indicated that p24α2 is condensed at active zone‐docked SV. During development, p24α2 expression is highest in the post‐natal period and gradually decreases with age. We also confirmed that amyloid precursor protein and γ‐secretase components are localized at active zone‐docked SV. Our results suggest a novel functional role for p24α2 in the regulation of synaptic transmission and synaptogenesis, and provide evidence for the participation of p24α2 in the regulation of Aβ generation and secretion in the brain.

  相似文献   


15.
Endocytosis in synapses sustains neurotransmission by recycling vesicle membrane and maintaining the homeostasis of synaptic membrane. A role of membrane cholesterol in synaptic endocytosis remains controversial because of conflicting observations, technical limitations in previous studies, and potential interference from non‐specific effects after cholesterol manipulation. Furthermore, it remains unclear whether cholesterol participates in distinct forms of endocytosis that function under different activity levels. In this study, applying the whole‐cell membrane capacitance measurement to monitor endocytosis in real time at the rat calyx of Held terminals, we found that disrupting cholesterol with dialysis of cholesterol oxidase or methyl‐β‐cyclodextrin impaired three different forms of endocytosis, including slow endocytosis, rapid endocytosis, and endocytosis of the retrievable membrane that exists at the surface before stimulation. The effects were observed when disruption of cholesterol was mild enough not to change Ca2+ channel current or vesicle exocytosis, indicative of stringent cholesterol requirement in synaptic endocytosis. Extracting cholesterol with high concentrations of methyl‐β‐cyclodextrin reduced exocytosis, mainly by decreasing the readily releasable pool and the vesicle replenishment after readily releasable pool depletion. Our study suggests that cholesterol is an important, universal regulator in multiple forms of vesicle endocytosis at mammalian central synapses.

  相似文献   


16.
Cholinergic signaling plays an important role in regulating the growth and regeneration of axons in the nervous system. The α7 nicotinic receptor (α7) can drive synaptic development and plasticity in the hippocampus. Here, we show that activation of α7 significantly reduces axon growth in hippocampal neurons by coupling to G protein‐regulated inducer of neurite outgrowth 1 (Gprin1), which targets it to the growth cone. Knockdown of Gprin1 expression using RNAi is found sufficient to abolish the localization and calcium signaling of α7 at the growth cone. In addition, an α7/Gprin1 interaction appears intimately linked to a Gαo, growth‐associated protein 43, and CDC42 cytoskeletal regulatory pathway within the developing axon. These findings demonstrate that α7 regulates axon growth in hippocampal neurons, thereby likely contributing to synaptic formation in the developing brain.

  相似文献   


17.
Blood–brain barrier (BBB) disruption occurring within the first few hours of ischemic stroke onset is closely associated with hemorrhagic transformation following thrombolytic therapy. However, the mechanism of this acute BBB disruption remains unclear. In the neurovascular unit, neurons do not have direct contact with the endothelial barrier; however, they are highly sensitive and vulnerable to ischemic injury, and may act as the initiator for disrupting BBB when cerebral ischemia occurs. Herein, we employed oxygen–glucose deprivation (OGD) and an in vitro BBB system consisting of brain microvascular cells and astrocytes to test this hypothesis. Neurons (CATH.a cells) were exposed to OGD for 3‐h before co‐culturing with endothelial monolayer (bEnd 3 cells), or endothelial cells plus astrocytes (C8‐D1A cells). Incubation of OGD‐treated neurons with endothelial monolayer alone did not increase endothelial permeability. However, when astrocytes were present, the endothelial permeability was significantly increased, which was accompanied by loss of occludin and claudin‐5 proteins as well as increased vascular endothelial growth factor (VEGF) secretion into the conditioned medium. Importantly, all these changes were abolished when VEGF was knocked down in astrocytes by siRNA. Our findings suggest that ischemic neurons activate astrocytes to increase VEGF production, which in turn induces endothelial barrier disruption.

  相似文献   


18.
19.
Metabotropic glutamate receptor 5 (mGluR5) regulates excitatory post‐synaptic signaling in the central nervous system (CNS) and is implicated in various CNS disorders. Protein kinase A (PKA) signaling is known to play a critical role in neuropsychiatric disorders such as Parkinson's disease, schizophrenia, and addiction. Dopamine signaling is known to modulate the properties of mGluR5 in a cAMP‐ and PKA‐dependent manner, suggesting that mGluR5 may be a direct target for PKA. Our study identifies mGluR5 at Ser870 as a direct substrate for PKA phosphorylation and demonstrates that this phosphorylation plays a critical role in the PKA‐mediated modulation of mGluR5 functions such as extracellular signal‐regulated kinase phosphorylation and intracellular Ca2+ oscillations. The identification of the molecular mechanism by which PKA signaling modulates mGluR5‐mediated cellular responses contributes to the understanding of the interaction between dopaminergic and glutamatergic neuronal signaling.

  相似文献   


20.
Microglia are brain macrophages, which can undergo multinucleation to give rise to multinucleated giant cells that accumulate with ageing and some brain pathologies. However, the origin, regulation and function of multinucleate microglia remain unclear. We found that inflammatory stimuli, including lipopolysaccharide, amyloid β, α‐synuclein, tumour necrosis factor‐α and interferon γ, but not interleukin‐4, induced multinucleation of cultured microglia: primary rat cortical microglia and the murine microglial cell line BV‐2. Inflammation‐induced multinucleation was prevented by a protein kinase C (PKC) inhibitor Gö6976 (100 nM) and replicated by a PKC activator phorbol myristate acetate (160 nM). Multinucleation was reversible and not because of cell fusion or phagocytosis, but rather failure of cytokinesis. Time‐lapse imaging revealed that some dividing cells failed to abscise, even after formation of long cytoplasmic bridges, followed by retraction of bridge and reversal of cleavage furrow to form multinucleate cells. Multinucleate microglia were larger and 2–4 fold more likely to phagocytose large beads and both dead and live PC12 cells. We conclude that multinucleate microglia are reversibly generated by inflammation via PKC inhibition of cytokinesis, and may have specialized functions/dysfunctions including the phagocytosis of other cells.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号