首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blackberry anthracnose, caused by Colletotrichum spp., is an important disease of cultivated blackberry in the world. In Colombia, it is the number one limiting factor for commercial production. This study was conducted to determine the species of Colletotrichum infecting blackberry plants as well as the organ distribution, pathogenicity and response to benomyl of the isolated strains. Sixty isolates from stems (n = 20), thorns (n = 20) and inflorescences (n = 20) were identified as Colletotrichum acutatum and Colletotrichum gloeosporioides by a species‐specific polymerase chain reaction (PCR). Both Colletotrichum species were found in the same plant but on different organs. Colletotrichum gloeosporioides species predominated in thorn lesions (n = 16) and C. acutatum in stems (n = 15) and inflorescence (n = 15). Pathogenicity assays on detached blackberry organs demonstrated differences between the two species with an average period of lesion development of 8.7 days for C. gloeosporioides and 10.3 days for C. acutatum. Wound inoculated organs had 90% disease development compared to 17.5% in non‐wounded. All C. acutatum isolates (n = 34) were benomyl tolerant, whereas C. gloeosporioides isolates (n = 26) were 30.7% sensitive and 69.2% moderately tolerant. Phylogenetic analysis with ITS sequences of a subset of 18 strains showed that strains classified as Cgloeosporioides had 100% identity to Colletotrichum kahawae, which belongs to the C. gloeosporioides species complex, whereas C. acutatum strains clustered into two different groups, with high similarity to the A2 and the A4 molecular groups. These data demonstrate for the first time the differential distribution of both species complexes in blackberry plant organs and further clarifies the taxonomy of the strains.  相似文献   

2.
Colletotrichum gloeosporioides, one of the main agents of mango anthracnose, causes latent infections in unripe mango and can lead to huge losses during fruit storage and transport. Dimethyl trisulfide (DMTS) is an antifungal agent produced by several microorganisms or plants, but its effects on the infection process of C. gloeosporioides have not been well characterized. A histological investigation demonstrated that DMTS exhibits strong inhibitory effects on the infection process of C. gloeosporioides in planta by inhibiting the germination of conidia and formation of appressoria, damaging cytoplasm to cause cells to vacuolate and contributing to deformation of appressoria prior to penetration. This is the first study to demonstrate antifungal activity of DMTS against C. gloeosporioides on mango by suppression of the infection process, thus providing a novel postharvest biorational control for mango anthracnose.  相似文献   

3.
Coffee blister spot has been associated with species from the Colletotrichum genus, but there is no information on the variability of isolates present on leaf lesions. This study evaluated a population of Colletotrichum gloeosporioides strains from blister spot lesions in Coffea arabica. Colletotrichum spp. isolates were collected from blister spot lesions on leaves of coffee trees from Catuaí and Topázio cultivars (Coffea arabica). Monosporic cultures were obtained from colonies with sporulation. A pathogenicity test was carried out by inoculation of pathogens on the leaves of young coffee plants. C. gloeosporioides strains were characterized by morphologial, cytological and physiological analyses. The molecular analysis was carried out using Inter‐Retrotransposon Amplified Polymorphism (IRAP) markers. C. gloeosporioides strains showed no pathogenicity on coffee plants and presented a wide variability in all traits evaluated. The presence of sexual strains, formation of CATs (conidial anastomosis tubes) among conidial strains and high mycelial compatibility among strains observed suggest the occurrence of sexual and asexual recombination. The role of these C. gloeosporioides strains on the lesions of coffee plant leaves is unclear.  相似文献   

4.
The objective of this study was to identify the causal agent of anthracnose disease of cassava in Thailand. The study was carried out by collecting cassava samples with anthracnose symptoms from various planting areas including 10 districts of eight provinces in Thailand. One hundred and thirty‐six Colletotrichum samples were isolated from cassava anthracnose lesions on leaves, petioles and stems. Thirty‐eight single‐spore isolates were subsequently obtained and cultured on half potato dextrose agar for morphological and molecular characterizations. All 38 isolates were pathogenic with varying degrees of virulence when tested on detached leaves of Kasetsart 50, a susceptible cassava cultivar. Based on their growth habit, colony morphology, conidial morphology and the internal transcribed spacer sequences similarity to that of Colletotrichum accessions in the GenBank, one isolate was identified as C. capsici, one as C. lindemuthianum, two as Caeschynomene, four as Cboninense and 28 Cgloeosporioides species complex. Geographically, the cosmopolitan C. gloeosporioides species complex was found in all regions, but other species were found only in particular regions. This is, so far, the first report of Colletotrichum complex species associated with cassava anthracnose in Thailand.  相似文献   

5.
Anthracnose incited by Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. is a wide spread and economically important disease of black pepper. In the present study, role of microsclerotia (MS) in the trans‐seasonal perpetuation of C. gloeosporioides was investigated. Microscopical examination of the runner shoots exhibiting necrotic lesions revealed the presence of dark, melanized structures which resembled MS. The excised necrotic regions when subjected to high humidity produced acervulus with setae. Under in vitro conditions, C. gloeosporioides produced MS predominantly on the aerial surface as inseparable congregations, enmeshed in the mycelial mats in potato dextrose broth and as individual units 7–8 days after incubation on glass slides. Sequential events in the formation of MS included germination of conidia, formation of conidial anastomosis tubes, aggregation of hyphae, and the formation of melanized microsclerotial bodies. Three types of microsclerotial germination were observed under in vitro conditions viz., sporogenic, myceliogenic and both. PCR confirmation with CgInt species‐specific primer and ITS4 resulted in 450‐bp amplification. Since, runner shoots are predominantly used as propagating material in black pepper, an approach was devised to manage anthracnose under nursery conditions by treating the 2‐ to 3‐node cuttings (nursery planting material) with carbendazim (12%)—mancozeb (63%) @ 0.1% for 30 min. The results of the study suggests a new facet in the disease cycle of black pepper anthracnose, indicating that the pathogen survives as microsclerotia in planta and could act as a potential source of inoculum.  相似文献   

6.
The postharvest anthracnose pathogen Colletotrichum gloeosporioides inciting latent or quiescent infection of mango was detected in early stages using immunoassay methods. Twenty‐five pathotypes isolated from different agroclimatic zones of Tamil Nadu, Karnataka and Pondicherry, India, revealed the variation in protein profile analysis (SDS‐PAGE). The polyclonal antibodies (PCA) were raised against the unfractioned mycelial protein (UMP) and a 40‐kDa polypeptide present in all pathotypes. Standardization of antigen and antiserum dilutions revealed that an antigen dilution of 1 : 200 (protein concentration of 20 μg/ml) and antiserum dilution of 1 : 100 (protein concentration of 40 μg/ml raised against UMP) and 1 : 200 (protein concentration of 20 μg/ml raised against 40 kDa polypeptide) was found to be optimum for the detection of anthracnose pathogen. Both antisera detected the Cgloeosporioides antigen in enzyme‐linked immunosorbent assays (ELISAs), dot immunobinding assays (DIBAs) and Western blots. The specificity in reaction was compared by isolating other Colletotrichum spp. from various hosts viz., Clindemuthianum (beans), Cfalcatum (sugarcane), Cmusae (banana), Ccapsici (chillies) and Botryodiplodia theobromae (mango). The antisera generated against UMP revealed the cross‐reaction with other host isolates and mango stem end rot pathogen (B. theobromae). The PCA raised against 40‐kDa polypeptide exhibited the specific reaction with Cgloeosporioides isolates in all the immunoassay techniques. By utilizing both PCA, the presence of latent infection was observed in healthy‐looking leaves, flowers and fruits in orchard conditions. The fruit tissues recorded high absorbance values followed by flowers and leaves in all the detection methods. The ELISA technique was also useful in assessing the pathogen inoculum at various biocontrol formulations sprayed mango trees under field conditions. The fluorescent pseudomonad strains mixture (KFP1 + FP7) amended with chitin sprayed at 30‐day intervals revealed the significant reduction in pathogen load than other formulations and unsprayed control.  相似文献   

7.
México is the most important producer of prickly pear (Opuntia ficus‐indica) in the world. There are several fungal diseases that can have a negative impact on their yields. In this study, there was a widespread fungal richness on cladodes spot of prickly pears from México. A total of 41 fungi isolates were obtained from cladodes spot; 11 of them were morphologically different. According to the pathogenicity test, seven isolates caused lesions on cladodes. The morphological and molecular identification evidenced the isolation of Colletotrichum gloeosporioides, Alternaria alternata, Fusarium lunatum, Curvularia lunata. All these species caused similar symptoms of circular cladodes spot. However, it is noticeable that some lesions showed perforation and detachment of affected tissues by Fusarium lunatum. To our knowledge, this is the first report of the Fusarium lunatum as phytopathogenic fungus of cladodes of prickly pear. The chitosan inhibited the mycelium growth in the seven isolates of phytopathogenic fungi. Chitosan applications diminished the disease incidence caused by C. gloeosporioies and F. lunatum in 40 and 100%, respectively. Likewise, the lesion severity index in cladodes decreased. There are no previous reports about the application of chitosan on cladodes of prickly pears for the control of phytopathogenic fungi. Therefore, this research could contribute to improve the strategies for the management of diseases in prickly pear.  相似文献   

8.
Anthracnose Citrus disease has been associated with several symptoms worldwide and it is recently compromising Citrus production in the Mediterranean area. Four species complexes are mainly involved: Colletotrichum boninense, C. acutatum, C. gloeosporioides and C. truncatum. In this study, we investigated the genetic diversity of Colletotrichum spp. in Tunisia associated with wither‐tip of twigs on Citrus. Specific primers ITS4‐CgInt allowed the identification of Cgloeosporioides species complex in all the 54 isolates, sampled from three regions and four Citrus species. Overall, our genotypic analysis using 10 SSR markers showed a moderate diversity level in Tunisian C. gloeosporioides population and highlighted that C. gloeosporioides reproduce mainly clonally. In addition, heterothallic isolates were present in our population, suggesting that the pathogen population may undergo parasexual recombinations. The highest genetic diversity in C. gloeosporioides was recorded in Nabeul and on orange, which likely constitutes the area and the host of origin for the Citrus anthracnose disease in Tunisia. In addition, no population subdivision was detected at the geographic, host species or cultivars’ origin levels. However, our study identified two genetic subpopulations and indicated a rapid C. gloeosporioides population change at temporal scale that should be further examined over several consecutive growing seasons in order to understand its population dynamics.  相似文献   

9.
Previous studies of the CAP20 gene in Colletotrichum gloeosporioides show that the CAP20 gene may affect virulence in avocados and tomatoes. In this study, we characterized the function of CAP20 from C. gloeosporioides, the causal agent of Colletotrichum leaf fall disease of Hevea brasilience. CAP20 encodes a perilipin homologue protein. Further investigations showed that the Cap20‐GFP fusion protein localized in lipid droplets in hypha and conidia. A C. gloeosporioides mutant, lacking CAP20, had thinner spores and smaller appressoria, and its turgor pressure generation was dramatically reduced and pore size was enlarged. Furthermore, we tested the pathogenicity of conidia from the wild type, gene‐deleted mutant and complemented transformant C.gloeosporioides on the leaves of rubber trees in sterile water and 0.19 M PEG2000. Conidia from the wild type and complemented transformant C. gloeosporioides in 0.19 M PEG2000 caused necrotic lesions and did not produce any lesion with the CAP20 null mutant. But all of them had developed normal disease lesions when they were inoculated in water. These results suggest that CAP20 is a perilipin homologue protein and is involved in functional appressoria development in C. gloeosporioides. CAP20 gene only affects fungal virulence to some extent by reducing the penetration of the immature appressoria into host cuticle in C. gloeosporioides.  相似文献   

10.
The endophytic fungal community associated with the ethnomedicinal plant Echinacea purpurea was investigated as well as its potential for providing antifungal compounds against plant pathogenic fungi. A total of 233 endophytic fungal isolates were obtained and classified into 42 different taxa of 16 genera, of which Alternaria alternata, Colletotrichum dematium, and Stagonosporopsis sp. 2 are the most frequent colonizers. The extracts of 29 endophytic fungi displayed activities against important phytopathogenic fungi. Eight antifungal extracts were selected for chemical analysis. Forty fatty acids were identified by gas chromatography‐flame‐ionization detection (GC‐FID) analysis. The compounds (–)‐5‐methylmellein and (–)‐(3R)‐8‐hydroxy‐6‐methoxy‐3,5‐dimethyl‐3,4‐dihydroisocoumarin were isolated from Biscogniauxia mediterraneaEPU38CA crude extract. (–)‐5‐Methylmellein showed weak activity against Phomopsis obscurans, Pviticola, and Fusarium oxysporum, and caused growth stimulation of C. fragariae, C. acutatum, C. gloeosporioides, and Botrytis cinerea. (–)‐(3R)‐8‐Hydroxy‐6‐methoxy‐3,5‐dimethyl‐3,4‐dihydroisocoumarin appeared slightly more active in the microtiter environment than 5‐methylmellein. Our results indicate that E. purpurea lives symbiotically with different endophytic fungi, which are able to produce bioactive fatty acids and aromatic compounds active against important phytopathogenic fungi. The detection of the different fatty acids and aromatic compounds produced by the endophytic community associated with wild E. purpurea suggests that it may have intrinsic mutualistic resistance against phytopathogen attacks in its natural environment.  相似文献   

11.
The striped mealybug, Ferrisia virgata (Cockerell) (Hemiptera: Pseudococcidae), is a cosmopolitan pest of a variety of agricultural crops including cotton. To investigate the biological control potential of the predatory ladybird Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) against this pest, we evaluated its developmental and reproductive fitness when feeding on F. virgata reared on pumpkin fruits or on cotton leaves and compared this to a diet of Planococcus citri Risso (Hemiptera: Pseudococcidae) reared on pumpkin fruits. F. virgata and P. citri reared on pumpkins were equally suitable prey for the pre‐imaginal stages of C. montrouzieri. Duration of total immature development was 1 day longer in C. montrouzieri offered F. virgata reared on cotton as compared with F. virgata or P. citri reared on pumpkin, whereas no significant difference was observed in survival rates. Diet significantly influenced the reproductive fitness of C. montrouzieri. Females offered P. citri reared on pumpkin had significantly shorter pre‐oviposition periods and higher fecundity and fertility than those given F. virgata reared on pumpkin or cotton leaves. F. virgata grown on cotton leaves supported the reproduction of C. montrouzieri better than F. virgata reared on pumpkin. Our study established that C. montrouzieri can successfully complete its development and reproduction when fed exclusively on F. virgata and indicates its potential as a biological control agent of this emerging cotton pest.  相似文献   

12.
Temperature‐dependent development, parasitism and longevity of the braconid parasitoids, Fopius arisanus Sonan and Diachasmimorpha longicaudata Ashmed on Bactorcera invadens Drew Tsuruta & White, was evaluated across five constant temperatures (15, 20, 25, 30 and 35°C). Developmental rate decreased linearly with increasing temperature for both the parasitoid species. Linear and Brière‐2 nonlinear models were used to determine the lower temperature threshold at which the developmental rate (1/D) approached zero. For F. arisanus, lower thresholds to complete development estimated with the linear and nonlinear models were 10.1 and 6.9°C, respectively. The total degree‐days (DD) required to complete the development estimated by the linear model for F. arisanus was 360. In D. longicaudata, the linear and nonlinear models estimated lower thresholds of 10.4 and 7.3°C, respectively, and the total DD estimated was 282. In F. arisanus, percentage parasitism differed significantly across all temperatures tested and was highest at 25°C (71.1 ± 2.5) and lowest at 15°C (46.4 ± 1.4). Parasitoid progeny sex ratio was female biased at all temperatures except at 20°C. In D. longicaudata, percentage parasitism was highest at 20°C (52.2 ± 4.0) and lowest at 15°C (27.7 ± 2.5). Parasitoid progeny sex ratio was female biased and similar for all temperatures. Adult longevity of both parasitoids was shortest at 35°C and longest at 15°C, and females lived significantly longer than males at all temperatures tested. Our findings provide some guidance for future mass rearing and field releases of the two parasitoids for the management of B. invadens in Africa.  相似文献   

13.
14.
Leaf blight is a major foliar disease prevalent in all cardamom‐cultivating tracts, manifesting in diverse forms of symptoms. In this study, six symptomatological variants were delineated based on the expression of foliar symptoms in cardamom genotypes (Malabar, Mysore and Vazhukka) and designated as SV 1 to SV 6. Among the symptomatological variants, SV 1, SV 2, SV 3 and SV 6 were more pronounced in Vazhukka, while SV 4 and SV 5 were prominent in Malabar type. Subsequent isolation from the variants yielded whitish colonies, which were correspondingly coded as SV 1 to SV 6. The conidia were fusiform, five‐celled, with three median versicoloured cells, two terminal hyaline cells and measured 23.1–27.25 × 3.84–4.43 μm. The apical cells had two to three tubular, flexuous, unbranched appendages, whereas the basal appendage was single, tubular and unbranched. Based on conidial characteristics and molecular characterization with internal transcribed spacer rDNA region, partial β‐tubulin, translation elongation factor 1 alpha and large subunit (28S) of the nrRNA genes revealed identity of the pathogens as Neopestalotiopsis clavispora. The pathogenicity test was performed on Malabar, Mysore and Vazhukka genotypes, and Koch’s postulates were proved. In‐vitro interaction at three temperature regimes indicated that N. clavispora was inhibitory to Colletotrichum gloeosporioides at 10 and 30°C. Among the fungicides, carbendazim, propiconazole and carbendazim‐mancozeb completely arrested hyphal growth of N. clavispora under in‐vitro conditions. This study constitutes first report on the association of Neopestalotiopsis clavispora with leaf blight disease of small cardamom.  相似文献   

15.
Postharvest anthracnose of banana caused by Colletotrichum musae is one of the major diseases resulting in huge economic losses worldwide. To control this disease using biocontrol agents, two antagonistic strains SD7 and NB20 with significant inhibitory effects on mycelial growth and conidial germination of C. musae were identified and evaluated in this study. The inhibitory effects of cell‐free culture filtrates of SD7 and NB20 on conidial germination of C. musae were both 100%, and those on mycelial growth of C. musae were 97.7 ± 0.9% and 95.0 ± 0.6%, respectively. The antifungal activities of cell‐free culture filtrates of both strains were still stable after they were stored at 4°C for 6 months. The control efficacies of cell‐free culture filtrates of SD7 and NB20 on postharvest anthracnose of banana were 55.9 ± 4.1% and 33.2 ± 3.9%, respectively. The disease severity (mean scale value) in banana fruit fingers was significantly lower after the treatment with a cultural suspension of the bacterial strain SD7 (1.4 ± 0.49) or actinomycete strain NB20 (2.0 ± 0.63), compared to that in the control (4.8 ± 0.40). After subculturing for 10 generations, the antifungal efficiency of NB20 remained stable, whereas that of strain SD7 declined obviously. Lastly, based on the morphological, physio‐biochemical and molecular characteristics, the bacterial strain SD7 was identified as Burkholderia cepacia, while the actinomycete strain NB20 was identified as Streptomyces katrae. The results from this study will provide the basis for developing an effective and novel biofungicide to control banana anthracnose disease.  相似文献   

16.
Females of myrmecophilous butterflies tend to oviposit in plants visited by ant species that engage in stable associations with its larvae. In Banisteriopsis malifolia, caterpillars are attended by the same ants that feed on extrafloral nectaries. A conflict may arise when both the plant and caterpillars compete for ant attention, and ants are assumed to forage on the highest quality resource. By attending caterpillars, ants can be indirectly detrimental to plant fitness because florivorous larvae feed intensively until pupation. In this study, we specifically investigated (i) whether the occurrence of facultative myrmecophilous Synargis calyce (Riodinidae) caterpillars in B. malifolia was based on ant species (Camponotus blandus or Ectatomma tuberculatum) and abundance; (ii) the monopolization of ants by the butterfly larvae and (iii) the florivory rates incurred by the caterpillars on inflorescences. The abundance of S. calyce was six‐fold greater in plants with C. blandus, compared to E. tuberculatum treatments. Caterpillars monopolized up to 50% of C. blandus on the plants, indicating that the resources offered by S. calyce were more attractive to ants than extrafloral nectaries. Florivory by riodinids incurred losses of almost 60% of flower buds. Myrmecophilous riodinids exploited an ant–plant mutualism by attracting aggressive ants that become larvae bodyguards. Thus, this ecological interaction is potentially detrimental to B. malifolia, since the ants, which can provide protection against herbivores, shift to provide defence for one of these herbivores.  相似文献   

17.
In March 2014, an outbreak of shoot cankers was observed on grafted Castanea sativa plants in a glasshouse in central Italy. Morphological characteristics led to the identification of isolates of Phomopsis recovered from cankered stems and shoots. Based on the morphological characteristics of colony appearance, shape of conidia and conidiomata as well as sequences of internal transcribed spacer regions (ITS), actin (ACT) and translation elongation factor (TEF‐1α), the fungus was identified as Phomopsis theicola/Diaporthe foeniculina. Pathogenicity test showed that P. theicola isolates were pathogenic to C. sativa when artificially inoculated, reproducing the symptoms originally observed. Koch's postulates were fulfilled by re‐isolating the pathogen. This is the first report of P. theicola/D. foeniculina causing stem and shoot cankers and dieback on C. sativa in Italy or elsewhere.  相似文献   

18.
The general principles in pathogen transmission by insects involve a complex and specific interplay, in this case between thrips, tospovirus and their shared host plant, which has led to outbreaks of crop disease epidemics of economic and social importance. The possible processes and factors driving their co‐evolution were partly studied by rearing Frankliniella occidentalis [western flower thrips (WFT)] on either tomato spotted wilt virus (TSWV)–infected or uninfected Capsicum annum leaflets throughout their larval stages. Later, pupae were transferred individually on healthy leaf discs for further studies of the influence of TSWV on WFT development and behavioural patterns. The exposure of WFT to TSWV was found to improve performance with regard to longevity and survival, with mean longevity being significantly higher in TSWV‐exposed WFT compared to unexposed ones (F(3,403) = 22.44, P < 0.0001). The observed improvement in survival was as a result of significant reduction in mortality for the WFT individuals exposed to TSWV (F(3,383) = 849.94, P < 0.0001) compared to the unexposed. However, the results showed a significant reduction in mean daily fecundity overtime (F10,10) = 246.66, P < 0.0001) and across the four treatments (F(3,30) = 6.62, P = 0.001), as well as lifetime fecundity (F(3,23) = 21.23, P < 0.0001) of the WFT exposed to TSWV compared to the unexposed reared on uninfected leaf discs. For preferential test, C. annum leaf discs infected with TSWV were more attractive to WFT as compared to healthy leaf discs (χ2(4, 34) = 112.35, P < 0.0001). These results are envisaged to contribute to a clear understanding into the plant–vector–virus interaction, which is essential for accurate diagnosis and control of the TSWV epidemic, as well as the control of F. occidentalis as crop pest.  相似文献   

19.
20.
Colletotrichum gloeosporioides is the common causal agent of anthracnose in papaya (Carica papaya L.) fruits, and infection by this fungal pathogen results in severe post-harvest losses. In the Yucatán peninsula (Mexico) a different Colletotrichum species was isolated from papaya fruits with atypical anthracnose lesions. The DNAs from a variety of Colletotrichum isolates producing typical and atypical lesions, respectively, were amplified by PCR with C.gloeosporioides-specific primers. All isolates from typical anthracnose lesions yielded a 450 bp PCR product, but DNAs from isolates with atypical lesions failed to produce an amplification product. For further characterization, the rDNA 5.8S-ITS region was amplified by PCR and processed for sequencing and RFLP analysis, respectively, to verify the identity of the papaya anthracnose pathogens. The results revealed unequivocally the existence of two Colletotrichum species causing anthracnose lesions on papaya fruits: C. gloeosporioides and C. capsici. PCR-RFLP using the restriction endonuclease MspI reliably reproduced restriction patterns specific for C. capsici or C. gloeosporioides. The generation of RFLP patterns by MspI (or AluI or RsaI) is a rapid, accurate, and unequivocal method for the detection and differentiation of these two Colletotrichum species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号