首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highlights? The intraerythrocytic malaria parasite extrudes Na+ via a Na+-ATPase ? Parasite Na+ homeostasis is disrupted by the antimalarial spiroindolones ? Mutations in PfATP4 confer resistance to Na+ disruption by the spiroindolones ? PfATP4 is postulated to be a Na+ efflux ATPase and a target of the spiroindolones  相似文献   

2.
Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or “Accelerated Resistance to Multiple Drugs” (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring detrimental fitness costs.  相似文献   

3.
Malaria parasites grow within erythrocytes, but are also free in host plasma between cycles of asexual replication. As a result, the parasite is exposed to fluctuating levels of Na+ and K+, ions assumed to serve important roles for the human pathogen, Plasmodium falciparum. We examined these assumptions and the parasite's ionic requirements by establishing continuous culture in novel sucrose‐based media. With sucrose as the primary osmoticant and K+ and Cl? as the main extracellular ions, we obtained parasite growth and propagation at rates indistinguishable from those in physiological media. These conditions abolish long‐known increases in intracellular Na+ via parasite‐induced channels, excluding a requirement for erythrocyte cation remodelling. We also dissected Na+, K+ and Cl? requirements and found that unexpectedly low concentrations of each ion meet the parasite's demands. Surprisingly, growth was not adversely affected by up to 148 mM K+, suggesting that low extracellular K+ is not an essential trigger for erythrocyte invasion. At the same time, merozoite egress and invasion required a threshold ionic strength, suggesting critical electrostatic interactions between macromolecules at these stages. These findings provide insights into transmembrane signalling in malaria and reveal fundamental differences between host and parasite ionic requirements.  相似文献   

4.
Inhibition of rat neuronal Na+/K+‐ATPase α3 isoform at low (100 nM) ouabain concentration led to activation of MAP kinase cascade via PKC and PIP3 kinase. In contrast to ouabain‐sensitive α3 isoform of Na+/K+‐ATPase, an ouabain‐resistant α1 isoform (inhibition with 1 mM of ouabain) of Na+/K+‐ATPase regulates MAP kinase via Src kinase dependent reactions. Using of Annexin V‐FITC apoptotic test to determine the cells with early apoptotic features allows to conclude that α3 isoform stimulates and α1 suppresses apoptotic process in cerebellum neurons. These data are the first demonstration showing participation of ouabain‐resistant (α1) and ouabain‐sensitive (α3) Na+/K+‐ATPase isoforms in diverse signaling pathways in neuronal cells. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
6.
In halophytic plants, the high-affinity potassium transporter HKT gene family can selectively uptake K+ in the presence of toxic concentrations of Na+. This has so far not been well examined in glycophytic crops. Here, we report the characterization of SbHKTI;4, a member of the HKT gene family from Sorghum bicolor. Upon Na+ stress, SbHKT1;4 expression was more strongly upregulated in salt-tolerant sorghum accession, correlating with a better balanced Na+/ K+ ratio and enhanced plant growth. Heterogeneous expression analyses in mutants of Saccharomyces cerevisiae and Arabidopsis thaliana indicated that overexpressing SbHKT1;4 resulted in hypersensitivity to Na+ stress, and such hypersensitivity could be alleviated with the supply of elevated levels of K+, implicating that SbHKT1;4 may mediate K+ uptake in the presence of excessive Na+. Further electrophysiological evidence demonstrated that SbHKT1;4 could transport Na+ and K+ when expressed in Xenopus laevis oocytes. The relevance of the finding that SbHKTI;4 functions to maintain optimal Na+/K+ balance under Na+ stress to the breeding of salt-tolerant glycophytic crops is discussed.  相似文献   

7.
Chloroquine‐resistant malaria parasites (Plasmodium falciparum) show an increased leak of H+ ions from their internal digestive vacuole in the presence of chloroquine. This phenomenon has been attributed to the transport of chloroquine, together with H+, out of the digestive vacuole (and hence away from its site of action) via a mutant form of the parasite's chloroquine resistance transporter (PfCRT). Here, using transfectant parasite lines, we show that a range of other antimalarial drugs, as well as various ‘chloroquine resistance reversers’ induce an increased leak of H+ from the digestive vacuole of parasites expressing mutant PfCRT, consistent with these compounds being substrates for mutant forms, but not the wild‐type form, of PfCRT. For some compounds there were significant differences observed between parasites having the African/Asian Dd2 form of PfCRT and those with the South American 7G8 form of PfCRT, consistent with there being differences in the transport properties of the two mutant proteins. The finding that chloroquine resistance reversers are substrates for mutant PfCRT has implications for the mechanism of action of this class of compound.  相似文献   

8.
Development of new class of anti-malarial drugs is an essential requirement for the elimination of malaria. Bioactive components present in medicinal plants and their chemically modified derivatives could be a way forward towards the discovery of effective anti-malarial drugs. Herein, we describe a new class of compounds, 1,3-benzoxazine derivatives of pharmacologically active phytophenols eugenol (compound 3) and isoeugenol (compound 4) synthesised on the principles of green chemistry, as anti-malarials. Compound 4, showed highest anti-malarial activity with no cytotoxicity towards mammalian cells. Compound 4 induced alterations in the intracellular Na+ levels and mitochondrial depolarisation in intraerythrocytic Plasmodium falciparum leading to cell death. Knowing P-type cation ATPase PfATP4 is a regulator for sodium homeostasis, binding of compound 3, compound 4 and eugenol to PfATP4 was analysed by molecular docking studies. Compounds showed binding to the catalytic pocket of PfATP4, however compound 4 showed stronger binding due to the presence of propylene functionality, which corroborates its higher anti-malarial activity. Furthermore, anti-malarial half maximal effective concentration of compound 4 was reduced to 490?nM from 17.54?µM with nanomaterial graphene oxide. Altogether, this study presents anti-plasmodial potential of benzoxazine derivatives of phytophenols and establishes disruption of parasite sodium homeostasis as their mechanism of action.  相似文献   

9.
The recent detection of clinical Artemisinin (ART) resistance manifested as delayed parasite clearance in the Cambodia-Thailand border area raises a serious concern. The mechanism of ART resistance is not clear; but the P. falciparum sarco/endoplasmic reticulum Ca2+-ATPase (PfSERCA or PfATP6) has been speculated to be the target of ARTs and thus a potential marker for ART resistance. Here we amplified and sequenced pfatp6 gene (∼3.6 Kb) in 213 samples collected after 2005 from the Greater Mekong Subregion, where ART drugs have been used extensively in the past. A total of 24 single nucleotide polymorphisms (SNPs), including 8 newly found in this study and 13 nonsynonymous, were identified. However, these mutations were either uncommon or also present in other geographical regions with limited ART use. None of the mutations were suggestive of directional selection by ARTs. We further analyzed pfatp6 from a worldwide collection of 862 P. falciparum isolates in 19 populations from Asia, Africa, South America and Oceania, which include samples from regions prior to and after deployments ART drugs. A total of 71 SNPs were identified, resulting in 106 nucleotide haplotypes. Similarly, many of the mutations were continent-specific and present at frequencies below 5%. The most predominant and perhaps the ancestral haplotype occurred in 441 samples and was present in 16 populations from Asia, Africa, and Oceania. The 3D7 haplotype found in 54 samples was the second most common haplotype and present in nine populations from all four continents. Assessment of the selection strength on pfatp6 in the 19 parasite populations found that pfatp6 in most of these populations was under purifying selection with an average dN/dS ratio of 0.333. Molecular evolution analyses did not detect significant departures from neutrality in pfatp6 for most populations, challenging the suitability of this gene as a marker for monitoring ART resistance.  相似文献   

10.
Intraerythrocytic malaria parasites produce vast amounts of lactic acid through glycolysis. While the egress of lactate is very rapid, the mode of extrusion of H+ is not known. The possible involvement of a Na+/H+ antiport in the extrusion of protons across the plasma membrane of Plasmodium falciparum has been investigated by using the fluorescent pH probe 6-carboxyfluorescein. The resting cytosolic pH was 7.27 ± 0.1 in ring stage parasites and 7.31 ± 0.12 in trophozoites. Spontaneous acidification of parasite cytosol was observed in Na+-medium and realkalinization occurred upon addition of Na+ to the medium in a concentration-dependent manner, with no apparent saturation. The rate of H+-at the ring stage was higher than that at the trophozoite stage due to the larger surface/volume ratio of the young parasite stage. Na+-H+-was: 1) inhibited by the Na+/H+ inhibitors amiloride and 5-(N-ethyl-isopropyl) amiloride (EIPA), though at relatively high concentrations; 2) augmented with rising pH6 (pHi = 6.2 [Na+]o = 30 mM); and 3) decreased with increasing pHi (pHo = 7.4; [Na+]o = 30 mM). The pHi and the pHo dependencies of H+-were almost identical at all parasite stages. Only at pHi > 7.6 efflux was totally obliterated. The target of this inhibitory effect is probably other than the antiport. Results indicate that H+-is mediated by a Na+/H+ antiport which is regulated by host and parasite pH and by the host cytosol sodium concentration. The proton transport capacity of the antiport can easily cope with all the protons of lactic acid produced by parasite's glycolysis. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Two recessive mutations of Paramecium tetraurelia confer sensitivity to potassium: While wild-type cells survive when up to 30 mM KCI is added to their growth medium, mutants cease to grow and die when levels of added KCl reach 20–25 mM. Similar sensitivities are seen to Rb+ and Cs+, but not to Na+. Swimming behavior of mutants is indistinguishable from wild type when place in stimulating solutions containing Na+, K+, or Ba2+. Behavioral adaptation to low levels of K+ also is indistiguishable from wild type. Flame photometry reveals that one mutant is unable to keep out K+ when that ion is at high levels in the medium, while the other mutant readily leaks K+ and Na+ when those ions are at low levels in the medium. Both mutants have markedly lower internal Na+ than does wild type. Problem with K+ permeability account for the sensitivity of the one mutant to elevated external K+, but the basis of sensitivity in the other mutant is unclear. These mutants expand the range of ion regulation mutants in Paramecium and demonstrate that lesions in cellular ion regulation in this organism need not result in changes in swimming behavior.  相似文献   

12.
The bacterial flagellar motor is an intricate nanomachine which converts ion gradients into rotational movement. Torque is created by ion‐dependent stator complexes which surround the rotor in a ring. Shewanella oneidensis MR‐1 expresses two distinct types of stator units: the Na+‐dependent PomA4B2 and the H+‐dependent MotA4B2. Here, we have explored the stator unit dynamics in the MR‐1 flagellar system by using mCherry‐labeled PomAB and MotAB units. We observed a total of between 7 and 11 stator units in each flagellar motor. Both types of stator units exchanged between motors and a pool of stator complexes in the membrane, and the exchange rate of MotAB, but not of PomAB, units was dependent on the environmental Na+‐levels. In 200 mM Na+, the numbers of PomAB and MotAB units in wild‐type motors was determined to be about 7:2 (PomAB:MotAB), shifting to about 6:5 without Na+. Significantly, the average swimming speed of MR‐1 cells at low Na+ conditions was increased in the presence of MotAB. These data strongly indicate that the S. oneidensis flagellar motors simultaneously use H+ and Na+ driven stators in a configuration governed by MotAB incorporation efficiency in response to environmental Na+ levels.  相似文献   

13.
Malaria is responsible for more deaths around the world than any other parasitic disease. Due to the emergence of strains that are resistant to the current chemotherapeutic antimalarial arsenal, the search for new antimalarial drugs remains urgent though hampered by a lack of knowledge regarding the molecular mechanisms of artemisinin resistance. Semisynthetic compounds derived from diterpenes from the medicinal plant Wedelia paludosa were tested in silico against the Plasmodium falciparum Ca2+-ATPase, PfATP6. This protein was constructed by comparative modelling using the three-dimensional structure of a homologous protein, 1IWO, as a scaffold. Compound 21 showed the best docking scores, indicating a better interaction with PfATP6 than that of thapsigargin, the natural inhibitor. Inhibition of PfATP6 by diterpene compounds could promote a change in calcium homeostasis, leading to parasite death. These data suggest PfATP6 as a potential target for the antimalarial ent-kaurane diterpenes.  相似文献   

14.
Despite the investments in malaria research, an effective vaccine has not yet been developed and the causative parasites are becoming increasingly resistant to most of the available drugs. PfATP6, the sarco/endoplasmic reticulum Ca2+ pump (SERCA) of P. falciparum, has been recently genetically validated as a potential antimalarial target and cyclopiazonic acid (CPA) has been found to be a potent inhibitor of SERCAs in several organisms, including P. falciparum. In position 263, PfATP6 displays a leucine residue, whilst the corresponding position in the mammalian SERCA is occupied by a glutamic acid. The PfATP6 L263E mutation has been studied in relation to the artemisinin inhibitory effect on P. falciparum and recent studies have provided evidence that the parasite with this mutation is more susceptible to CPA. Here, we characterized, for the first time, the interaction of CPA with PfATP6 and its mammalian counterpart to understand similarities and differences in the mode of binding of the inhibitor to the two Ca2+ pumps. We found that, even though CPA does not directly interact with the residue in position 263, the presence of a hydrophobic residue in this position in PfATP6 rather than a negatively charged one, as in the mammalian SERCA, entails a conformational arrangement of the binding pocket which, in turn, determines a relaxation of CPA leading to a different binding mode of the compound. Our findings highlight differences between the plasmodial and human SERCA CPA‐binding pockets that may be exploited to design CPA derivatives more selective toward PfATP6. Proteins 2015; 83:564–574. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

15.
Prostaglandin E2 (PGE2) is quantitatively one of the major prostaglandins synthesized in mammalian brain, and there is evidence that it facilitates seizures and neuronal death. However, little is known about the molecular mechanisms involved in such excitatory effects. Na+,K+‐ATPase is a membrane protein which plays a key role in electrolyte homeostasis maintenance and, therefore, regulates neuronal excitability. In this study, we tested the hypothesis that PGE2 decreases Na+,K+‐ATPase activity, in order to shed some light on the mechanisms underlying the excitatory action of PGE2. Na+,K+‐ATPase activity was determined by assessing ouabain‐sensitive ATP hydrolysis. We found that incubation of adult rat hippocampal slices with PGE2 (0.1–10 μM) for 30 min decreased Na+,K+‐ATPase activity in a concentration‐dependent manner. However, PGE2 did not alter Na+,K+‐ATPase activity if added to hippocampal homogenates. The inhibitory effect of PGE2 on Na+,K+‐ATPase activity was not related to a decrease in the total or plasma membrane immunocontent of the catalytic α subunit of Na+,K+‐ATPase. We found that the inhibitory effect of PGE2 (1 μM) on Na+,K+‐ATPase activity was receptor‐mediated, as incubation with selective antagonists for EP1 (SC‐19220, 10 μM), EP3 (L‐826266, 1 μM) or EP4 (L‐161982, 1 μM) receptors prevented the PGE2‐induced decrease of Na+,K+‐ATPase activity. On the other hand, incubation with the selective EP2 agonist (butaprost, 0.1–10 μM) increased enzyme activity per se in a concentration‐dependent manner, but did not prevent the inhibitory effect of PGE2. Incubation with a protein kinase A (PKA) inhibitor (H‐89, 1 μM) and a protein kinase C (PKC) inhibitor (GF‐109203X, 300 nM) also prevented PGE2‐induced decrease of Na+,K+‐ATPase activity. Accordingly, PGE2 increased phosphorylation of Ser943 at the α subunit, a critical residue for regulation of enzyme activity. Importantly, we also found that PGE2 decreases Na+,K+‐ATPase activity in vivo. The results presented here imply Na+,K+‐ATPase as a target for PGE2‐mediated signaling, which may underlie PGE2‐induced increase of brain excitability.  相似文献   

16.
Summary Application of an hypo-osmotic shock to isolated axons ofCarcinus maenas induces a decrease in the intracellular content of K+, Na+ and Cl. The changes in Na+ and Cl levels are only transitory while the K+ level reaches new steady-state value much lower than the control. The modification of K+ concentration cannot be ascribed only to a simple dilution process and it is proposed that the regulation of intracellular K+ plays an important role in limiting the swelling which occurs in this tissue.Hypo-osmotic conditions also induce an increase in Na+ permeability.The results are discussed in relation to changes in ion transport and interactions with intracellular organic compounds that could arise during the process of volume regulation.  相似文献   

17.
Aquatic organisms are often exposed to dramatic changes in salinity in the environment. Despite decades of research, many questions related to molecular and physiological mechanisms mediating sensing and adaptation to salinity stress remain unanswered. Here, responses of Vaucheria erythrospora, a turgor‐regulating xanthophycean alga from an estuarine habitat, have been investigated. The role of ion uptake in turgor regulation was studied using a single cell pressure probe, microelectrode ion flux estimation (MIFE) technique and membrane potential (Em) measurements. Turgor recovery was inhibited by Gd3+, tetraethylammonium chloride (TEA), verapamil and orthovanadate. A NaCl‐induced shock rapidly depolarized the plasma membrane while an isotonic sorbitol treatment hyperpolarized it. Turgor recovery was critically dependent on the presence of Na+ but not K+ and Cl? in the incubation media. Na+ uptake was strongly decreased by amiloride and changes in net Na+ and H+ fluxes were oppositely directed. This suggests active uptake of Na+ in V. erythrospora mediated by an antiport Na+/H+ system, functioning in the direction opposite to that of the SOS1 exchanger in higher plants. The alga also retains K+ efficiently when exposed to high NaCl concentrations. Overall, this study provides insights into mechanisms enabling V. erythrospora to regulate turgor via ion movements during hyperosmotic stress.  相似文献   

18.
Salinity is a major abiotic stress which affects crop plants around the world, resulting in substantial loss of yield and millions of dollars of lost revenue. High levels of Na+ in shoot tissue have many adverse effects and, crucially, yield in cereals is commonly inversely proportional to the extent of shoot Na+ accumulation. We therefore need to identify genes, resistant plant cultivars and cellular processes that are involved in salinity tolerance, with the goal of introducing these factors into commercially available crops. Through the use of an Arabidopsis thaliana mapping population, we have identified a highly significant quantitative trait locus (QTL) linked to Na+ exclusion. Fine mapping of this QTL identified a protein kinase (AtCIPK16), related to AtSOS2, that was significantly up‐regulated under salt stress. Greater Na+ exclusion was associated with significantly higher root expression of AtCIPK16, which is due to differences in the gene's promoter. Constitutive overexpression of the gene in Arabidopsis leads to plants with significant reduction in shoot Na+ and greater salinity tolerance. amiRNA knock‐downs of AtCIPK16 in Arabidopsis show a negative correlation between the expression levels of the gene and the amount of shoot Na+. Transgenic barley lines overexpressing AtCIPK16 show increased salinity tolerance.  相似文献   

19.
Workshop 7: 2     
Glutamine, the preferred precursor for neurotransmitter glutamate, is likely to be the principal substrate for the neuronal System A transporter SAT1 in vivo. By measuring currents associated with SAT1 expression in Xenopus oocytes, we found that SAT1 mediates transport of small, neutral, aliphatic amino acids including glutamine, alanine and the System A‐specific analogue 2‐(methylamino) isobutyrate, each with K0.5 of 0.3–0.5 mm . Amino acid transport is driven by the Na+ electrochemical gradient. Kinetic data indicates that Na+/cotransport comprises the ordered binding first of Na+ (a voltage‐dependent step), then alanine, then simultaneous translocation. Li+ (but not H+) can substitute for Na+ but results in reduced Vmax. In the absence of amino acid, SAT1 mediates a cation leak with selectivity Na+, Li+, H+, K+. The temperature‐dependence of the leak current (Ea = 17 ± 3 kcal/mol) is consistent with carrier‐mediated Na+ uniport activity (cf 13 ± 2 kcal/mol for Na+/alanine cotransport) but the leak does not saturate at physiological [Na+], suggesting channel activity. Despite a Na+ Hill coefficient of 1, we obtained Na+/amino acid coupling coefficients greater than 1 from simultaneous measurement of charge and [3H]alanine or [3H]glutamine uptake. Interpretation of these data is model‐dependent and consistent with either (1) an all‐carrier model in which Na+/amino acid cotransport is thermodynamically coupled 2 : 1, cotransport is preferred over Na+ uniport, and in which there is little cooperativity between Na+ binding events, or (2) 1 : 1 coupling in parallel with an always‐on Na+ channel activity. In either scenario, the presence of SAT1 at the plasma membrane and resultant Na+ fluxes will place a significant energy burden on the cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号