首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of light quality on the photosynthetic pigments as chromatic adaptation in 8 species of lichens were examined. The chlorophylls, carotenoids in 5 species with green algae as phycobionts (Cladonia mitis, Hypogymnia physodes, H. tubulosa var. tubulosa and subtilis, Flavoparmelia caperata, Xanthoria parietina) and the chlorophyll a, carotenoids and phycobiliprotein pigments in 3 species with cyanobacteria as photobionts (Peltigera canina, P. polydactyla, P. rufescens) were determined. The total content of photosynthetic pigments was calculated according to the formule and particular pigments were determined by means CC, TLC, HPLC and IEC chromatography. The total content of the photosynthetic pigments (chlorophylls, carotenoids) in the thalli was highest in red light (genus Peltigera), yellow light (Xanthoria parietina), green light (Cladonia mitis) and at blue light (Flavoparmelia caperata and both species of Hypogymnia). The biggest content of the biliprotein pigments at red and blue lights was observed. The concentration of C-phycocyanin increased at red light, whereas C-phycoerythrin at green light.  相似文献   

2.
Animal coloration can be the result of many interconnected elements, including the production of colour‐producing molecules de novo, as well as the acquisition of pigments from the diet. When acquired through the diet, carotenoids (a common class of pigments) can influence yellow, orange, and red coloration and enhanced levels of carotenoids can result in brighter coloration and/or changes in hue or saturation. We tested the hypothesis that dietary carotenoid supplementation changes the striking black and yellow coloration of the southern corroboree frog (Pseudophryne corroboree, Amphibia: Anura). Our dietary treatment showed no measurable difference in colour or brightness for black patches in frogs. However, the reflectance of yellow patches of frogs raised on a diet rich in carotenoids was more saturated (higher chroma) and long‐wave shifted in hue (more orange) compared to that of frogs raised without carotenoids. Interestingly, frogs with carotenoid‐poor diets still developed their characteristic yellow and black coloration, suggesting that their yellow colour patches are a product of pteridines manufactured de novo.  相似文献   

3.
Carotenoid composition and spectroscopic characteristics were analyzed for Pterosperma cristatum Schiller, one of the most primitive known members of green algae. This alga contained a substantial amount of carotenoid esters, siphonaxanthin C14:1 trans‐Δ2 ester and 6′‐OH siphonaxanthin C14:1 trans‐Δ2 ester, but lacked lutein. This is the first report of carotenoid C14:1 trans‐Δ2 esters from phototrophic organisms. In vivo absorption spectra and excitation spectra of the cells revealed that these carotenoids absorbed blue‐green light and could transfer energy to chl a. These carotenoids were concluded to function as antenna pigments in P. cristatum.  相似文献   

4.
The highly radioresistant Rubrobacter radiotolerans, contains red pigments. Since the pigments could not be extracted by usual methods, a new method was developed in which the pigments were extracted with organic solvents after addition of 10 N KOH to the intact cells, followed by neutralization. These pigments were also extracted after treatment with achromopeptidase, but not with lysozyme. The extracted pigments separated into two main spots by TLC (48.6% and 22.6%), and were confirmed to be carotenoids by chemical tests. The two major pigments had 13 conjugated double bonds as determined from the main maximum wavelength of the light absorption spectra. Their molecular weights were determined to be 740 and 722 by mass spectrometry. The mass spectra of their TMS-derivatives revealed that they contained four and three tertiary OH groups, respectively. Confirming their identical light and IR spectra, these pigments were determined to be bacterioruberin and monoanhydrobacterioruberin, respectively, the characteristic carotenoids of halophilic bacteria. The existence of these pigments in bacteria other than halobacteria provides interesting new evidence on the distribution of these compounds.  相似文献   

5.
Over the past three decades, the red‐winged blackbird Agelaius phoeniceus has served as a model species for studies of sexual selection and the evolution of ornamental traits. Particular attention has been paid to the role of the colorful red‐and‐yellow epaulets that are striking in males but reduced in females and juveniles. It has been assumed that carotenoid pigments bestow the brilliant red and yellow colors on epaulet feathers, but this has never been tested biochemically. Here, we use high‐performance liquid chromatography (HPLC) to describe the pigments present in these colorful feathers. Two red ketocarotenoids (astaxanthin and canthaxanthin) are responsible for the bright red hue of epaulets. Two yellow dietary precursors pigments (lutein and zeaxanthin) are also present in moderately high concentrations in red feathers. After extracting carotenoids, however, red feathers remained deep brown in color. HPLC tests show that melanin pigments (primarily eumelanin) are also found in the red‐pigmented barbules of epaulet feathers, at an approximately equal concentration to carotenoids. This appears to be an uncommon feature of carotenoid‐based ornamental plumage in birds, as was shown by comparable analyses of melanin in the yellow feathers of male American goldfinches Carduelis tristis and the red feathers of northern cardinals Cardinalis cardinalis, in which we detected virtually no melanins. Furthermore, the yellow bordering feathers of male epaulets are devoid of carotenoids (except when tinged with a carotenoid‐derived pink coloration on occasion) and instead are comprised of a high concentration of primarily phaeomelanin pigments. The dual pigment composition of red epaulet feathers and the melanin‐only basis for yellow coloration may have important implications for the honesty‐reinforcing mechanisms underlying ornamental epaulets in red‐winged blackbirds, and shed light on the difficulties researchers have had to date in characterizing the signaling function of this trait. As in several other birds, the melanic nature of feathers may explain why epaulets are used largely to settle aggressive contests rather than to attract mates.  相似文献   

6.
Abstract: A suitable light quantity and quality is essential for optimal photosynthetic metabolism. Using combinations of three lamp types, the impact of the quality of artificial light conditions on the photosynthetic apparatus of leaves developed in growth chambers was analysed. The VIALOX‐Planta lamps are quite poor outside the green to orange (520 ‐ 620 nm) wavelength range, while the HQI‐BT lamps present a more uniform spectral intensity between 425 and 650 nm (blue to red). The halogen lamps are particularly rich in the red and far red range of the electromagnetic spectra. The lamps also differ in the red: far red ratio, which were 3.07 (VIALOX), 2.06 (HQI‐BT) and 1.12 (halogen). Clear positive effects were detected in most of the photosynthetic parameters in relation to light quality, both at stomatal and mesophyll levels. Despite some species‐dependent sensitivity to blue and red/far red wavelengths, observed among the studied parameters, the best photosynthetic performances of the test plants (Packyrhizus ahipa and Piatã, a hybrid of Coffea dewevrei×Coffea arabica) were obtained almost always with the reinforcement of blue (HQI‐BT lamps), red and far red (halogen lamps) wavelengths and with a red: far red ratio closer to that observed in nature. This suggests the involvement of more than one photoreceptor family in photosynthetic performance. Under such light conditions, increases in net photosynthesis and stomatal conductance were observed and, despite the moderate effects on photosynthetic capacity, strong effects were observed in the capture and transfer of light energy in the antennae pigments, photochemical efficiency of photosystem II and electron transport. This was related to the striking quantitative and qualitative impacts observed on total chlorophylls and carotenoids, which reached, in some cases, increases of 100 and 200 %, respectively. Among carotenoids, increases as high as 9‐fold for α‐carotene were observed (P. ahipa), with chlorophyll (a/b), total (chlorophyll/carotenoid) and carotene (α/β) ratios also strongly affected. This would have affected the structure and stability of photosynthetic membranes which, in turn, affected photosynthetic‐related processes (e.g., antennae pigments, photosystem II and electron transport efficiencies). This was particularly clear in the HQI + halogen treatment. The results unequivocally show that light quality could remain a clear limiting factor for leaf/plant development under artificial light conditions, which could be overcome using more than one lamp type, with complementary emission spectra.  相似文献   

7.
A red-eye colony was established in our laboratory in brown planthopper (BPH), Nilaparvata lugens (Stal), a major rice pest in Asia. Except for the red-eye phenotype, no other differences were observed between the wild-type (brown eye) and the mutant-type (red eye) in external characters. Genetic analysis revealed that the red-eye phenotype was controlled by a single autosomal recessive allele. Biological studies found that egg produc- tion and egg viability in the red-eye mutant colony were not significantly different from those in the wild-type BPH. Biochemical analysis and electronic microscopy examination revealed that the red-eye mutants contained decreased levels of both xanthommatin (brown) and pteridine (red) and reduced number of pigment granules. Thus, the changes of amount and ratio of the two pigments is the biochemical basis of this red-eye mutation. Our results indicate that the red-eye mutant gene (red) might be involved in one common gene locus shared by the two pigments in pigment transportation, pigment granule formation or some other processes.  相似文献   

8.
Reef‐building corals occur as a range of colour morphs because of varying types and concentrations of pigments within the host tissues, but little is known about their physiological or ecological significance. Here, we examined whether specific host pigments act as an alternative mechanism for photoacclimation in the coral holobiont. We used the coral Montipora monasteriata (Forskål 1775) as a case study because it occurs in multiple colour morphs (tan, blue, brown, green and red) within varying light‐habitat distributions. We demonstrated that two of the non‐fluorescent host pigments are responsive to changes in external irradiance, with some host pigments up‐regulating in response to elevated irradiance. This appeared to facilitate the retention of antennal chlorophyll by endosymbionts and hence, photosynthetic capacity. Specifically, net Pmax Chl a?1 correlated strongly with the concentration of an orange‐absorbing non‐fluorescent pigment (CP‐580). This had major implications for the energetics of bleached blue‐pigmented (CP‐580) colonies that maintained net Pmax cm?2 by increasing Pmax Chl a?1. The data suggested that blue morphs can bleach, decreasing their symbiont populations by an order of magnitude without compromising symbiont or coral health.  相似文献   

9.
Hooijmaijers CA 《Planta》2008,227(6):1301-1310
This study tests the hypothesis that red-leaved gametophytes of the liverwort Jamesoniella colorata (Lehm.) Schiffn., which are found in relatively dry habitats, are more desiccation tolerant than their green counterparts, which are found in moister environments, through superior photoprotective systems. The potential role of red foliar pigments in relation to water deficits is investigated by measuring cell water-relations, oxidative damage and photosynthetic responses. The presence of red pigments, or other cellular constituents, did not affect cell water-relations during dehydration and thus appear not to be involved in cell osmotic regulation. During drying, both colour morphs showed a similar non-photochemical quenching activity and did not experience significant oxidative damage, as measured by the amounts of ascorbate, malondialdehyde and photosynthetic pigments. However, the levels of oxidative damage increased directly upon rewetting the gametophytes, especially in low light conditions (25 μmol m−2 s−1). The efficiency of photosystem II only recovered partially after severe water deficits in both phenotypes. However, the red gametophytes recovered faster and more completely from mild water deficits than did the greens. Moreover, they experienced significantly less photobleaching after rehydration in low light. It is suggested that red pigments and/or carotenoids in these gametophytes improve desiccation tolerance by alleviating photooxidative damage.  相似文献   

10.
We mapped coloured snow during the summers of 1995 and 1996 at about 60 localities in the coastal region of northwest Spitsbergen. The colour was mainly induced by snow algae (Chlamydomonas spp. and Chloromonas spp.). In the late summer of 1996, snow algal fields of several hundred meters in size were observed along the west and north coasts. They had no preferred geographical orientation. We studied the abundance of primary pigments and secondary carotenoids from different developmental stages of the snow algae of Chlamydomonas spp. under natural conditions. Extensive accumulation of astaxanthin and its esters accompanied the transition from green biflagellated cells to orange spores, hypnozygotes and dark-red cysts. The photoprotective effect of the secondary carotenoids is enhanced by concentration in cytoplasmic lipid droplets around the nucleus and chloroplast. The nutrient content of melt-water and snow algae had no direct correlation with the content of secondary carotenoids. Relatively high Fe, Ca, P, K and Al contents of snow algae were found, suggesting a good supply of these mineral elements. Received: 20 May 1997 / Accepted: 18 March 1998  相似文献   

11.
Plastids in the fruits of isogenic lines of pepper (Capsicum annuum) were examined by electron microscopy with reference to four genotypes determining the carotenoid composition and the colors red, yellow, brown, and green of the ripe fruit. One gene pair (y+/y) influences carotenoid content and the other pair (cl+/cl) controls the chlorophyll. The retention of the grana and chlorophyll in the ripe fruits of the brown and green phenotypes is correlated with the cl cl genotype. The y+ gene increases the total carotenoids and promotes the formation of red pigments. Giant grana were found in the yellow and green phenotypes, but during ripening these disappeared in the yellow. Unusual dichotomous and concentric grana were observed in the green. Globule-associated carotenoids forming fibrillar crystalloids were present in all color types, although to a lesser degree in the yellow fruit. Membrane-associated carotenoids occurred only in the yellow and green phenotypes.  相似文献   

12.
Carotenoids are used for many functions by animals, including combining with other pigments to produce aposematic and cryptic coloration. Carotenoids in combination with blue pigments are responsible for green coloration in many caterpillars, and thus carotenoid sequestration may reduce their contrast against a green foliage background. We tested the hypothesis that carotenoid sequestration reduces contrast and enhances survival by rearing Trichoplusia ni Hübner (Lepidoptera: Noctuidae) on Brassica oleracea L. var. Acephala (Brassicaceae) leaves and exposing them to predators. We found that carotenoids derived from the host plant are partially excreted, along with chlorophyll, but also sequestered in hemolymph. Larvae that were given plants that provided carotenoids showed less contrast against their host plants within 1 day compared to larvae that were not provided with carotenoids. Last, both short‐term field observations and laboratory trials of larvae caged with predatory Podisus maculiventris Say (Hemiptera: Pentatomidae) nymphs showed that survival of carotenoid‐sequestering larvae was higher compared to larvae that did not sequester. These results suggest that carotenoid sequestration may be an important adaptive strategy that reduces susceptibility to natural enemies that hunt by sight. Further research that examines the mechanisms by which carotenoids are absorbed and modified will lend insights into the evolution of carotenoids functioning as passive defensive compounds.  相似文献   

13.
Spectral analysis at liquid N2 temperature of the circumesophageal ganglia of Aplysia juliana showed that carotenoids and a hemoglobin-like pigment are contained in concentrations of approx. 25 and 3 μM, respectively, in the whole ganglia. Microspectrophotometrical measurements of Aplysia neurons indicated that the carotenoids reside on lipochondria in a concentration of approx. 38 mM. In addition to lipochondria, two types of pigmented particulate having absorption maxima at about 512 and 525 nm, respectively, were found in the neurons. The neuronal carotenoids consist of violaxanthin, β-carotene and one minor component; among them the first occupies approx. 77% of total carotenoids. Two principal absorption maxima of the carotenoids, when existing in both ganglial homogenates and Triton X-100 extracts, show a red shift of 10 nm compared with those of free pigments in hexan. The red shift may be interpreted as due to the solvation of the carotenoids by surrounding lipids  相似文献   

14.
Microalgae are a major natural source for a vast array of valuable compounds, including a diversity of pigments, for which these photosynthetic microorganisms represent an almost exclusive biological resource. Yellow, orange, and red carotenoids have an industrial use in food products and cosmetics as vitamin supplements and health food products and as feed additives for poultry, livestock, fish, and crustaceans. The growing worldwide market value of carotenoids is projected to reach over US$1,000 million by the end of the decade. The nutraceutical boom has also integrated carotenoids mainly on the claim of their proven antioxidant properties. Recently established benefits in human health open new uses for some carotenoids, especially lutein, an effective agent for the prevention and treatment of a variety of degenerative diseases. Consumers’ demand for natural products favors development of pigments from biological sources, thus increasing opportunities for microalgae. The biotechnology of microalgae has gained considerable progress and relevance in recent decades, with carotenoid production representing one of its most successful domains. In this paper, we review the most relevant features of microalgal biotechnology related to the production of different carotenoids outdoors, with a main focus on β-carotene from Dunaliella, astaxanthin from Haematococcus, and lutein from chlorophycean strains. We compare the current state of the corresponding production technologies, based on either open-pond systems or closed photobioreactors. The potential of scientific and technological advances for improvements in yield and reduction in production costs for carotenoids from microalgae is also discussed.  相似文献   

15.
Changes in the in vivo chlorophyll fluorescencequenching, photosynthesis and pigment composition werefollowed in the green alga Chlorococcum sp.during exposure of the culture to nitrogen deficiencyand salinity stress with the aims to study theinterrelations between changes in physiological andphotochemical parameters and xanthophyll-cyclepigments content during adaptation to stress, and toevaluate the capacity of this green alga to producesecondary carotenoids in tubular photobioreactors.Exposure of Chlorococcum to nitrogendeficiency, 0.2 M NaCl and high irradiance outdoorscaused a strong depression of the photosyntheticactivity and of photochemical quantum yield ofPSII (Fv/Fm). These changes wereaccompanied by an increase of the non-photochemicalquenching coefficient (NPQ), of the amount ofxanthophyll-cycle pigments and of thecarotenoid/chlorophyll ratio. As a result of exposureto stress conditions, cell division completelystopped, although an increase in the biomass dryweight could be detected due to an increase in thecell size. These processes were followed, with acertain delay (15–20 h), by massive appearance ofsecondary carotenoids that reached the maximum (about50% total carotenoids) after 2–3 days of cultivation.The results show that despite of the lower carotenoidcontent (2 mg g-1 dry wt) as compared with Haematococcus, Chlorococcum can be apotentially interesting strain for secondarycarotenoid production because of its higher growthrate.  相似文献   

16.
The economically important grain aphid, Sitobion avenae (F.) shows colour polymorphism, with brown and green forms predominating. Colour is determined both genetically and in response to environmental factors, including nutrition. The biological significance of the colour polymorphism is unknown, although seasonal changes occur in the frequency of colour morphs in the field, whilst the brown morph may have adaptive significance in terms of hymenopterous endoparasitism. The ground colour of aphids is produced by haemolymph pigments, aphins (glucosides) and carotenoids. The latter may be under the synthetic control of intracellular endosymbiotic bacteria. In this study, the major carotenoid pigments of a brown and a green clone of S. avenae were examined using thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC), and their absorbance spectra recorded. Using TLC, the brown clone produced five bands of different Rf, ranging from yellow, to orange-pink to pink in colour. In contrast, the green clone gave only a single yellow band of higher Rf than any of the bands of brown aphids. Following separation of carotenoids by HPLC, brown aphids gave seven peaks and green aphids five. Comparison of absorbance maxima with known published values for carotenoids provides strong evidence for the identification of four of the carotenoid pigments from brown aphids (RB-4, 3,4-didehydrolycopene; RB-5, torulene; RB-6; lycopene; RB-7, γ-carotene) and one from green aphids (RG-2, α-carotene). The other carotenoids remain unidentified. The biosynthesis and possible biological relevance of the various pigments of S. avenae are briefly discussed.  相似文献   

17.
[目的]为不产氧光合细菌光合色素研究提供可行的较系统规范的研究方法和数据,揭示固氮红细菌(Rhodobacter azotoformans 134K20)光合色素光氧适应性机制.[方法]采用光谱法和色谱法对光和氧调控下的类胡萝卜素和细菌叶绿素合成代谢进行了研究.[结果]134K20菌株光照好氧时细胞得率最高.光照厌氧时主要合成3黄、1红、1紫、2绿、2蓝9种色素,黄色素大量表达.有氧时红色素大量表达,且启动2种新的红色素和1种新的紫色素表达,而黄色和蓝绿色素则受氧抑制.黑暗好氧主要合成2黄、3红、2紫、1绿、1蓝9种色素,但不同于光照厌氧.光照好氧时黄色素减少到1种,紫色素含量增加,其余同黑暗好氧.[结论]固氮红细菌(Rhodobacter azotoformans 134K20)是通过PpsR调节途径来调节光合基因表达的.黄色和红色素属于类胡萝卜素.黄色素1属于球形烯系列,其余两种黄色素是新的类胡萝卜素组分.红色素为新的球形烯酮组分,3种红色素极性、峰形和峰位差别显著,正己烷能显示其精细结构.紫色为极性较大的细菌脱镁叶绿素,绿色和蓝色为4种极性不同的细菌叶绿素a中间产物.乙醚甲醇法适合类胡萝卜素的提取,丙酮甲醇冰冻研磨法能快速有效完全提取光合色素.溶剂效应可有效鉴别细菌叶绿素a中间产物.  相似文献   

18.
In many bird species with asynchronous hatching, smaller, later‐hatched nestlings are out‐competed for food by their larger, earlier‐hatched siblings and therefore suffer increased mortality via starvation. It is thought that female birds can either maintain or reduce the survival disadvantage of later‐hatched nestlings by differentially allocating maternal resources across the eggs of a clutch. Carotenoid pigments are an example of resources that female birds allocate differentially when producing a clutch, but laying sequence patterns for these pigments remain poorly studied in North American songbirds. We examined intraclutch variation in yolk carotenoids and egg metrics in 27 full clutches of red‐winged blackbird Agelaius phoeniceus eggs collected from eight wetlands in central Alberta, Canada. We predicted that carotenoids would decrease across the laying sequence, as in this species, later‐hatched, marginal nestlings suffer greater mortality than earlier‐hatched, core nestlings. We found nine carotenoid pigments in red‐winged blackbird egg yolks, including two that have never been described from avian yolks: α‐doradexanthin and adonirubin. As predicted, concentrations and amounts of most carotenoids decreased across the laying sequence, suggesting that female red‐winged blackbirds depleted their carotenoid resources as they laid more eggs. However, egg mass and yolk mass both increased across the laying sequence, suggesting that female red‐winged blackbirds may use other maternal resources to compensate for the size and survival disadvantage experienced by later‐hatched, marginal nestlings.  相似文献   

19.
Usually marine algae are an excellent source of pigments for different commercial sectors. Freshwater macroalgae can be exploited as a good source of biologically active compounds provided an appropriate extraction method is developed. The efficiency of four methods, like microwave‐assisted (MAE), ultrasound‐assisted extraction (UAE), supercritical fluid extraction (SFE) with ethanol as a co‐solvent, as well as conventional Soxhlet extraction were studied in the same conditions (time, solvent and temperature) for the recovery of chlorophylls and carotenoids from three freshwater green algae species: Cladophora glomerata, Cladophora rivularis and Ulva flexuosa. UV‐Vis spectrophotometry was used to determine chlorophyll a, chlorophyll b and total carotenoid content in obtained extracts. The results of this study showed that the advantages of novel extraction techniques (MAE and UAE) include higher yield and, in consequence, lower costs compared to traditional solvent extraction techniques. These methods were much more efficient in freshwater green algae pigment recovery than the classic Soxhlet extraction as well as SFE.  相似文献   

20.
We separated chlorophylls c1 c2, and c3 of marine phytoplankton together with other pigments by a modification of the commonly applied reversed-phase-C18-high-performance liquid chromatography (RP-C18-HPLC) method. However, the chlorophyll c-like pigment 2,4, Mg-divinylpheoporphyrin as monomethyl ester, co-eluted with chlorophyll c1. The method involves optimization of the mobile phase by using a very high ion strength solvent in combination with a high carbon loaded RP-C18 column. Fingerprints of the various taxonomic groups of algae can thus be developed in a single run, including separation of the carotenoids lutein and zeaxanthin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号