首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Amyloid‐β peptide (Aβ), especially its oligomeric form, is believed to play an important role in the pathogenesis of Alzheimer's disease (AD). To this end, the binding of Aβ oligomer to cellular prion protein (PrPC) plays an important role in synaptic dysfunction in a mouse model of AD. Here, we have screened for compounds that inhibit Aβ oligomer binding to PrPC from medicines already used clinically (Mizushima Approved Medicine Library 1), and identified dextran sulfate sodium (DSS) as a candidate. In a cell‐free assay, DSS inhibited Aβ oligomer binding to PrPC but not to ephrin receptor B2, another endogenous receptor for Aβ oligomers, suggesting that the drug's action is specific to the binding of Aβ oligomer to PrPC. Dextran on the other hand did not affect this binding. DSS also suppressed Aβ oligomer binding to cells expressing PrPC but not to control cells. Furthermore, while incubation of mouse hippocampal slices with Aβ oligomers inhibited the induction of long‐term potentiation, simultaneous treatment with DSS restored the long‐term potentiation. As DSS has already been approved for use in patients with hypertriglyceridemia, and its safety in humans has been confirmed, we propose further analysis of this drug as a candidate for AD treatment.

  相似文献   


2.
The β‐amyloid precursor protein (APP) has been extensively studied for its role as the precursor of the β‐amyloid protein (Aβ) of Alzheimer's disease. However, the normal function of APP remains largely unknown. This article reviews studies on the structure, expression and post‐translational processing of APP, as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms.

  相似文献   


3.
4.
Autosomal‐dominant Alzheimer's disease (ADAD) is a genetic disorder caused by mutations in Amyloid Precursor Protein (APP) or Presenilin (PSEN) genes. Studying the mechanisms underlying these mutations can provide insight into the pathways that lead to AD pathology. The majority of biochemical studies on APP mutations to‐date have focused on comparing mechanisms between mutations at different codons. It has been assumed that amino acid position is a major determinant of protein dysfunction and clinical phenotype. However, the differential effect of mutations at the same codon has not been sufficiently addressed. In the present study we compared the effects of the aggressive ADAD‐associated APP I716F mutation with I716V and I716T on APP processing in human neuroglioma and CHO‐K1 cells. All APP I716 mutations increased the ratio of Aβ42/40 and changed the product line preference of γ‐secretase towards Aβ38 production. In addition, the APP I716F mutation impaired the ε‐cleavage and the fourth cleavage of γ‐secretase and led to abnormal APP β‐CTF accumulation at the plasma membrane. Taken together, these data indicate that APP mutations at the same codon can induce diverse abnormalities in APP processing, some resembling PSEN1 mutations. These differential effects could explain the clinical differences observed among ADAD patients bearing different APP mutations at the same position.

  相似文献   


5.
Physiological or α‐processing of amyloid‐β precursor protein (APP) prevents the formation of Aβ, which is deposited in the aging brain and may contribute to Alzheimer's disease. As such, drugs promoting this pathway could be useful for prevention of the disease. Along this line, we searched through a number of substances and unexpectedly found that a group of high‐energy compounds (HECs), namely ATP, phosphocreatine, and acetyl coenzyme A, potently increased APP α‐processing in cultured SH‐SY5Y cells, whereas their cognate counterparts, i.e., ADP, creatine, or coenzyme A did not show the same effects. Other HECs such as GTP, CTP, phosphoenol pyruvate, and S‐adenosylmethionine also promoted APP α‐processing with varying potencies and the effects were abolished by energy inhibitors rotenone or NaN3. The overall efficacy of the HECs in the process ranged from three‐ to four‐fold, which was significantly greater than that exhibited by other physiological stimulators such as glutamate and nicotine. This suggested that the HECs were perhaps the most efficient physiological stimulators for APP α‐processing. Moreover, the HECs largely offset the inefficient APP α‐processing in aged human fibroblasts or in cells impaired by rotenone or H2O2. Most importantly, some HECs markedly boosted the survival rate of SH‐SY5Y cells in the death process induced by energy suppression or oxidative stress. These findings suggest a new, energy‐dependent regulatory mechanism for the putative α‐secretase and thus will help substantially in its identification. At the same time, the study raises the possibility that the HECs may be useful to energize and strengthen the aging brain cells to slow down the progression of Alzheimer's disease.  相似文献   

6.
Leptin is a centrally acting hormone that controls metabolic pathways. Recent epidemiological studies suggest that plasma leptin is protective against Alzheimer's disease. However, the mechanism that underlies this effect remains uncertain. To investigate whether leptin inhibits the assembly of amyloid β‐protein (Aβ) on the cell surface of neurons, we treated primary neurons with leptin. Leptin treatment decreased the GM1 ganglioside (GM1) levels in the detergent‐resistant membrane microdomains (DRMs) of neurons. The increase in GM1 expression induced by leptin was inhibited after pre‐treatment with inhibitors of phosphatidylinositol 3‐kinase (LY294002), Akt (triciribine) and the mammalian target of rapamycin (i.e. rapamycin), but not by an inhibitor of extracellular signal‐regulated kinase (PD98059). In addition, pre‐treatment with these reagents blocked the induction of GM1 in DRMs by leptin. Furthermore, Aβ assembly on the cell surface of neurons was inhibited greatly after treatment with leptin. This reduction was markedly inhibited after pre‐treatment with LY294002, triciribine, and rapamycin. These results suggest that leptin significantly inhibits Aβ assembly by decreasing GM1 expression in DRMs of the neuronal surface through the phosphatidylinositol 3‐kinase/Akt/mammalian target of rapamycin pathway.

  相似文献   


7.
Rho‐associated coiled‐coil kinase 1 (ROCK1) is proposed to be implicated in Aβ suppression; however, the role for ROCK1 in amyloidogenic metabolism of amyloid precursor protein (APP) to produce Aβ was unknown. In the present study, we showed that ROCK1 kinase activity and its APP binding were enhanced in AD brain, resulting in increased β‐secretase cleavage of APP. Furthermore, we firstly confirmed that APP served as a substrate for ROCK1 and its major phosphorylation site was located at Ser655. The increased level of APP Ser655 phosphorylation was observed in the brain of APP/PS1 mice and AD patients compared to controls. Moreover, blockade of APP Ser655 phosphorylation, or inhibition of ROCK1 activity with either shRNA knockdown or Y‐27632, ameliorated amyloid pathology and improved learning and memory in APP/PS1 mice. These findings suggest that activated ROCK1 targets APP Ser655 phosphorylation, which promotes amyloid processing and pathology. Inhibition of ROCK1 could be a potential therapeutic approach for AD.  相似文献   

8.
The high‐affinity choline transporter (CHT) is responsible for choline uptake into cholinergic neurons, with this being the rate‐limiting step for acetylcholine production. Altering CHT protein disposition directly impacts choline uptake activity and cholinergic neurotransmission. Amyloid precursor protein (APP) interacts with CHT proteins and increases their endocytosis from the cell surface. The goal of this study was to examine regulation of CHT trafficking and activity by wild‐type APP (APPwt) and determine if this differs with Swedish mutant APP (APPSwe) in SH‐SY5Y human neuroblastoma cells. APPSwe differs from APPwt in its trafficking from the cell surface through endosomes. We report for the first time that CHT interacts significantly less with APPSwe than with APPwt. Surprisingly, however, CHT cell surface levels and choline uptake activity are decreased to the same extent and CHT co‐localization to early endosomes increased similarly in cells expressing either APPwt or APPSwe. A critical observation is that CHT co‐immunoprecipitates with βCTF from APPSwe‐expressing cells. We propose that decreased CHT function is mediated differently by APPwt and APPSwe; APPwt interaction with CHT facilitates its endocytosis from the cell surface, whereas the effect of APPSwe on CHT is mediated indirectly potentially by binding to the βCTF fragment or by Aβ released from cells.

  相似文献   


9.
10.
11.
The β‐amyloid peptides (Aβ), Aβ1–40 and Aβ1–42, have been implicated in Alzheimer's disease (AD) pathology. Although Aβ1–42 is generally considered to be the pathological peptide in AD, both Aβ1–40 and Aβ1–42 have been used in a variety of experimental models without discrimination. Here we show that monomeric or oligomeric forms of the two Aβ peptides, when interact with the neuronal cation channel, α7 nicotinic acetylcholine receptors (α7nAChR), would result in distinct physiologic responses as measured by acetylcholine release and calcium influx experiments. While Aβ1–42 effectively attenuated these α7nAChR‐dependent physiology to an extent that was apparently irreversible, Aβ1–40 showed a lower inhibitory activity that could be restored upon washings with physiologic buffers or treatment with α7nAChR antagonists. Our data suggest a clear pharmacological distinction between Aβ1–40 and Aβ1–42. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 25–30, 2003  相似文献   

12.
13.
The tumor necrosis factor (TNF)‐α converting enzyme (TACE) can cleave the cell‐surface ectodomain of the amyloid‐β precursor protein (APP), thus decreasing the generation of amyloid‐β (Aβ) by cultured non‐neuronal cells. While the amyloidogenic processing of APP in neurons is linked to the pathogenesis of Alzheimer's disease (AD), the expression of TACE in neurons has not yet been examined. Thus, we assessed TACE expression in a series of neuronal and non‐neuronal cell types by Western blots. We found that TACE was present in neurons and was only faintly detectable in lysates of astrocytes, oligodendrocytes, and microglial cells. Immunohistochemical analysis was used to determine the cellular localization of TACE in the human brain, and its expression was detected in distinct neuronal populations, including pyramidal neurons of the cerebral cortex and granular cell layer neurons in the hippocampus. Very low levels of TACE were seen in the cerebellum, with Purkinje cells at the granular‐molecular boundary staining faintly. Because TACE was localized predominantly in areas of the brain that are affected by amyloid plaques in AD, we examined its expression in a series of AD brains. We found that AD and control brains showed similar levels of TACE staining, as well as similar patterns of TACE expression. By double labeling for Aβ plaques and TACE, we found that TACE‐positive neurons often colocalized with amyloid plaques in AD brains. These observations support a neuronal role for TACE and suggest a mechanism for its involvement in AD pathogenesis as an antagonist of Aβ formation. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 40–46, 2001  相似文献   

14.
It has been proved that the principal component of senile plaques is aggregates of β‐amyloid peptide (Aβ) in cases of one of the most common forms of age‐related neurodegenerative disorders, Alzheimer's disease (AD). Although the synthetic methods for the synthesis of Aβ peptides have been developed since their first syntheses, Aβ[1‐42] is still problematic to prepare. The highly hydrophobic composition of Aβ[1‐42] results in aggregation between resin‐bound peptide chains or intrachain aggregation which leads to a decrease in the rates of deprotection and repetitive incomplete coupling reactions during 9‐flurenylmethoxycarbonyl (Fmoc) synthesis. In order to avoid aggregation and/or disrupt internal aggregation during stepwise Fmoc solid phase synthesis and to improve the quality of crude products, several attempts have been made. Since highly pure Aβ peptides in large quantities are used in biological experiments, we wanted to develop a method for a rational synthesis of human Aβ[1‐42] with high purity and adequate yield. This paper reports a convenient methodology with a novel solvent system for the synthesis of Aβ[1‐42], its N‐terminally truncated derivatives Aβ[4‐42] and Aβ[5‐42], and Aβ[1‐42] labeled with 7‐amino‐4‐methyl‐3‐coumarinylacetic acid (AMCA) at the N‐terminus using Fmoc strategy. The use of 10% anisole in Dimethylformamide/Dichloromethane (DMF/DCM) can substantially improve the purity and yield of crude Aβ[1‐42] and has been shown to be an optimal coupling condition for the synthesis of Aβ[1‐42]. Anisole is a cheap and simple aid in the synthesis of ‘difficult sequences’ where other solvents are less successful in the prevention of aggregation during the synthesis. Copyright © 2006 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Beta‐amyloid peptide (Aβ) is the major protein constituent found in senile plaques in Alzheimer's disease (AD). It is believed that Aβ plays a role in neurodegeneration associated with AD and that its toxicity is related to its structure or aggregation state. In this study, an approach based on chemical modification of primary amines and mass spectrometric (MS) detection was used to identify residues on Aβ peptide that were exposed or buried upon changes in peptide structure associated with aggregation. Results indicate that the N terminus was the most accessible primary amine in the fibril, followed by lysine 28, then lysine 16. A kinetic analysis of the data was then performed to quantify differences in accessibility between these modification sites. We estimated apparent equilibrium unfolding constants for each modified site of the peptide, and determined that the unfolding constant for the N terminus was approximately 100 times greater than that for K28, which was about six times greater than that for K16. Understanding Aβ peptide structure at the residue level is a first step in designing novel therapies for prevention of Aβ structural transitions and/or cell interactions associated with neurotoxicity in Alzheimer's disease. Biotechnol. Bioeng. 2009; 104: 181–192 © 2009 Wiley Periodicals, Inc.  相似文献   

16.
17.
The present study was designed to investigate the role of β‐amyloid (Aβ1‐42) in inducing neuronal pyroptosis and its mechanism. Mice cortical neurons (MCNs) were used in this study, LPS + Nigericin was used to induce pyroptosis in MCNs (positive control group), and Aβ1‐42 was used to interfere with MCNs. In addition, propidium iodide (PI) staining was used to examine cell permeability, lactate dehydrogenase (LDH) release assay was employed to detect cytotoxicity, immunofluorescence (IF) staining was used to investigate the expression level of the key protein GSDMD, Western blot was performed to detect the expression levels of key proteins, and enzyme‐linked immunosorbent assay (ELISA) was utilized to determine the expression levels of inflammatory factors in culture medium, including IL‐1β, IL‐18 and TNF‐α. Small interfering RNA (siRNA) was used to silence the mRNA expression of caspase‐1 and GSDMD, and Aβ1‐42 was used to induce pyroptosis, followed by investigation of the role of caspase‐1‐mediated GSDMD cleavage in pyroptosis. In addition, necrosulfonamide (NSA), an inhibitor of GSDMD oligomerization, was used for pre‐treatment, and Aβ1‐42 was subsequently used to observe the pyroptosis in MCNs. Finally, AAV9‐siRNA‐caspase‐1 was injected into the tail vein of APP/PS1 double transgenic mice (Alzheimer's disease mice) for caspase‐1 mRNA inhibition, followed by observation of behavioural changes in mice and measurement of the expression of inflammatory factors and pyroptosis‐related protein. As results, Aβ1‐42 could induce pyroptosis in MCNs, increase cell permeability and enhance LDH release, which were similar to the LPS + Nigericin‐induced pyroptosis. Meanwhile, the expression levels of cellular GSDMD and p30‐GSDMD were up‐regulated, the levels of NLRP3 inflammasome and GSDMD‐cleaved protein caspase‐1 were up‐regulated, and the levels of inflammatory factors in the medium were also up‐regulated. siRNA intervention in caspase‐1 or GSDMD inhibited Aβ1‐42‐induced pyroptosis, and NSA pre‐treatment also caused the similar inhibitory effects. The behavioural ability of Alzheimer's disease (AD) mice was relieved after the injection of AAV9‐siRNA‐caspase‐1, and the expression of pyroptosis‐related protein in the cortex and hippocampus was down‐regulated. In conclusion, Aβ1‐42 could induce pyroptosis by GSDMD protein, and NLRP3‐caspase‐1 signalling was an important signal to mediate GSDMD cleavage, which plays an important role in Aβ1‐42‐induced pyroptosis in neurons. Therefore, GSDMD is expected to be a novel therapeutic target for AD.  相似文献   

18.
The primary constituent of the amyloid plaque, β‐amyloid (Aβ), is thought to be the causal “toxic moiety” of Alzheimer's disease. However, despite much work focused on both Aβ and its parent protein, amyloid precursor protein (APP), the functional roles of APP and its cleavage products remain to be fully elucidated. Protein–protein interaction networks can provide insight into protein function, however, high‐throughput data often report false positives and are in frequent disagreement with low‐throughput experiments. Moreover, the complexity of the CNS is likely to be under represented in such databases. Therefore, we curated the published work characterizing both APP and Aβ to create a protein interaction network of APP and its proteolytic cleavage products, with annotation, where possible, to the level of APP binding domain and isoform. This is the first time that an interactome has been refined to domain level, essential for the interpretation of APP due to the presence of multiple isoforms and processed fragments. Gene ontology and network analysis were used to identify potentially novel functional relationships among interacting proteins.  相似文献   

19.
An important pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid‐beta (Aβ) peptides in the brain parenchyma, leading to neuronal death and impaired learning and memory. The protease γ‐secretase is responsible for the intramembrane proteolysis of the amyloid‐β precursor protein (APP), which leads to the production of the toxic Aβ peptides. Thus, an attractive therapeutic strategy to treat AD is the modulation of the γ‐secretase activity, to reduce Aβ42 production. Because phosphorylation of proteins is a post‐translational modification known to modulate the activity of many different enzymes, we used electrospray (LC‐MS/MS) mass spectrometry to identify new phosphosites on highly purified human γ‐secretase. We identified 11 new single or double phosphosites in two well‐defined domains of Presenilin‐1 (PS1), the catalytic subunit of the γ‐secretase complex. Next, mutagenesis and biochemical approaches were used to investigate the role of each phosphosite in the maturation and activity of γ‐secretase. Together, our results suggest that the newly identified phosphorylation sites in PS1 do not modulate γ‐secretase activity and the production of the Alzheimer's Aβ peptides. Individual PS1 phosphosites shall probably not be considered therapeutic targets for reducing cerebral Aβ plaque formation in AD.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号