首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Sphagnum mosses are keystone components of peatland ecosystems. They facilitate the accumulation of carbon in peat deposits, but climate change is predicted to expose peatland ecosystem to sustained and unprecedented warming leading to a significant release of carbon to the atmosphere. Sphagnum responses to climate change, and their interaction with other components of the ecosystem, will determine the future trajectory of carbon fluxes in peatlands. We measured the growth and productivity of Sphagnum in an ombrotrophic bog in northern Minnesota, where ten 12.8‐m‐diameter plots were exposed to a range of whole‐ecosystem (air and soil) warming treatments (+0 to +9°C) in ambient or elevated (+500 ppm) CO2. The experiment is unique in its spatial and temporal scale, a focus on response surface analysis encompassing the range of elevated temperature predicted to occur this century, and consideration of an effect of co‐occurring CO2 altering the temperature response surface. In the second year of warming, dry matter increment of Sphagnum increased with modest warming to a maximum at 5°C above ambient and decreased with additional warming. Sphagnum cover declined from close to 100% of the ground area to <50% in the warmest enclosures. After three years of warming, annual Sphagnum productivity declined linearly with increasing temperature (13–29 g C/m2 per °C warming) due to widespread desiccation and loss of Sphagnum. Productivity was less in elevated CO2 enclosures, which we attribute to increased shading by shrubs. Sphagnum desiccation and growth responses were associated with the effects of warming on hydrology. The rapid decline of the Sphagnum community with sustained warming, which appears to be irreversible, can be expected to have many follow‐on consequences to the structure and function of this and similar ecosystems, with significant feedbacks to the global carbon cycle and climate change.  相似文献   

2.
Bog ecosystems fulfil important functions in Earth's carbon and water turnover. While plant communities and their keystone species Sphagnum have been well studied, less is known about the microbial communities associated with them. To study our hypothesis that bog plants share an essential core of their microbiome despite their different phylogenetic origins, we analysed four plant community plots with 24 bryophytes, vascular plants and lichen species in two Alpine bogs in Austria by 16S rDNA amplicon sequencing followed by bioinformatic analyses. The overall bog microbiome was classified into 32 microbial phyla, while Proteobacteria (30.8%), Verrucomicrobia (20.3%) and Planctomycetes (15.1%) belonged to the most abundant groups. Interestingly, the archaeal phylum Euryarcheota represented 7.2% of total microbial abundance. However, a high portion of micro‐organisms remained unassigned at phylum and class level, respectively. The core microbiome of the bog vegetation contained 177 operational taxonomic units (OTUs) (150 526 seq.) and contributed to 49.5% of the total microbial abundance. Only a minor portion of associated core micro‐organisms was host specific for examined plant groups (5.9–11.6%). Using our new approach to analyse plant–microbial communities in an integral framework of ecosystem, vegetation and microbiome, we demonstrated that bog vegetation harboured a core microbiome that is shared between plants and lichens over the whole ecosystem and formed a transkingdom metacommunity. All micro‐ and macro‐organisms are connected to keystone Sphagnum mosses via set of microbial species, for example Burkholderia bryophila which was found associated with a wide spectrum of host plants and is known for a beneficial plant–microbe interaction.  相似文献   

3.
We measured net ecosystem CO2 exchange (NEE), plant biomass and growth, species composition, peat microclimate, and litter decomposition in a fertilization experiment at Mer Bleue Bog, Ottawa, Ontario. The bog is located in the zone with the highest atmospheric nitrogen deposition for Canada, estimated at 0.8–1.2 g N m−2 yr−1 (wet deposition as NH4 and NO3). To establish the effect of nutrient addition on this ecosystem, we fertilized the bog with six treatments involving the application of 1.6–6 g N m−2 yr−1 (as NH4NO3), with and without P and K, in triplicate 3 m × 3 m plots. The initial 5–6 years have shown a loss of first Sphagnum, then Polytrichum mosses, and an increase in vascular plant biomass and leaf area index. Analyses of NEE, measured in situ with climate‐controlled chambers, indicate that contrary to expectations, the treatments with the highest levels of nutrient addition showed lower rates of maximum NEE and gross photosynthesis, but little change in ecosystem respiration after 5 years. Although shrub biomass and leaf area increased in the high nutrient plots, loss of moss photosynthesis owing to nutrient toxicity, increased vascular plant shading and greater litter accumulation contributed to the lower levels of CO2 uptake. Our study highlights the importance of long‐term experiments as we did not observe lower NEE until the fifth year of the experiment. However, this may be a transient response as the treatment plots continue to change. Higher levels of nutrients may cause changes in plant composition and productivity and decrease the ability of peatlands to sequester CO2 from the atmosphere.  相似文献   

4.
Knowledge about Sphagnum-associated microbial communities, their structure and their origin is important to understand and maintain climate-relevant Sphagnum-dominated bog ecosystems. We studied bacterial communities of two cosmopolitan Sphagnum species, which are well adapted to different abiotic parameters (Sphagnum magellanicum, which are strongly acidic and ombrotrophic, and Sphagnum fallax, which are weakly acidic and mesotrophic), in three Alpine bogs in Austria by a multifaceted approach. Great differences between bacterial fingerprints of both Sphagna were found independently from the site. This remarkable specificity was confirmed by a cloning and a deep sequencing approach. Besides the common Alphaproteobacteria, we found a discriminative spectrum of bacteria; although Gammaproteobacteria dominated S. magellanicum, S. fallax was mainly colonised by Verrucomicrobia and Planctomycetes. Using this information for fluorescent in situ hybridisation analyses, corresponding colonisation patterns for Alphaproteobacteria and Planctomycetes were detected. Bacterial colonies were found in high abundances inside the dead big hyalocytes, but they were always connected with the living chlorocytes. Using multivariate statistical analysis, the abiotic factors nutrient richness and pH were identified to modulate the composition of Sphagnum-specific bacterial communities. Interestingly, we found that the immense bacterial diversity was transferred via the sporophyte to the gametophyte, which can explain the high specificity of Sphagnum-associated bacteria over long distances. In contrast to higher plants, which acquire their bacteria mainly from the environment, mosses as the phylogenetically oldest land plants maintain their bacterial diversity within the whole lifecycle.  相似文献   

5.
The collapse of the Soviet Union in 1991 has been a turning point in the World history that left a unique footprint on the Northern Eurasian ecosystems. Conducting large scale mapping of environmental change and separating between naturogenic and anthropogenic drivers is a difficult endeavor in such highly complex systems. In this research a piece‐wise linear regression method was used for breakpoint detection in Rain‐Use Efficiency (RUE) time series and a classification of ecosystem response types was produced. Supported by earth observation data, field data, and expert knowledge, this study provides empirical evidence regarding the occurrence of drastic changes in RUE (assessment of the timing, the direction and the significance of these changes) in Northern Eurasian ecosystems between 1982 and 2011. About 36% of the study area (3.4 million km2) showed significant (< 0.05) trends and/or turning points in RUE during the observation period. A large proportion of detected turning points in RUE occurred around the fall of the Soviet Union in 1991 and in the following years which were attributed to widespread agricultural land abandonment. Our study also showed that recurrent droughts deeply affected vegetation productivity throughout the observation period, with a general worsening of the drought conditions in recent years. Moreover, recent human‐induced turning points in ecosystem functioning were detected and attributed to ongoing recultivation and change in irrigation practices in the Volgograd region, and to increased salinization and increased grazing intensity around Lake Balkhash. The ecosystem‐state assessment method introduced here proved to be a valuable support that highlighted hotspots of potentially altered ecosystems and allowed for disentangling human from climatic disturbances.  相似文献   

6.
7.
The stress‐gradient hypothesis predicts a higher frequency of facilitative interactions as resource limitation increases. Under severe resource limitation, it has been suggested that facilitation may revert to competition, and identifying the presence as well as determining the magnitude of this shift is important for predicting the effect of climate change on biodiversity and plant community dynamics. In this study, we perform a meta‐analysis to compare temporal differences of species diversity and productivity under a nurse plant (Retama sphaerocarpa) with varying annual rainfall quantity to test the effect of water limitation on facilitation. Furthermore, we assess spatial differences in the herbaceous community under nurse plants in situ during a year with below‐average rainfall. We found evidence that severe rainfall deficit reduced species diversity and plant productivity under nurse plants relative to open areas. Our results indicate that the switch from facilitation to competition in response to rainfall quantity is nonlinear. The magnitude of this switch depended on the aspect around the nurse plant. Hotter south aspects under nurse plants resulted in negative effects on beneficiary species, while the north aspect still showed facilitation. Combined, these results emphasize the importance of spatial heterogeneity under nurse plants for mediating species loss under reduced precipitation, as predicted by future climate change scenarios. However, the decreased water availability expected under climate change will likely reduce overall facilitation and limit the role of nurse plants as refugia, amplifying biodiversity loss.  相似文献   

8.
9.
Species enter and persist in local communities because of their ecological fit to local conditions, and recently, ecologists have moved from measuring diversity as species richness and evenness, to using measures that reflect species ecological differences. There are two principal approaches for quantifying species ecological differences: functional (trait‐based) and phylogenetic pairwise distances between species. Both approaches have produced new ecological insights, yet at the same time methodological issues and assumptions limit them. Traits and phylogeny may provide different, and perhaps complementary, information about species' differences. To adequately test assembly hypotheses, a framework integrating the information provided by traits and phylogenies is required. We propose an intuitive measure for combining functional and phylogenetic pairwise distances, which provides a useful way to assess how functional and phylogenetic distances contribute to understanding patterns of community assembly. Here, we show that both traits and phylogeny inform community assembly patterns in alpine plant communities across an elevation gradient, because they represent complementary information. Differences in historical selection pressures have produced variation in the strength of the trait‐phylogeny correlation, and as such, integrating traits and phylogeny can enhance the ability to detect assembly patterns across habitats or environmental gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号