首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Specific cells within the early mammalian embryo have the capacity to generate all somatic lineages plus the germline. This property of pluripotency is confined to the epiblast, a transient tissue that persists for only a few days. In vitro, however, pluripotency can be maintained indefinitely through derivation of stem cell lines. Pluripotent stem cells established from the newly formed epiblast are known as embryonic stem cells (ESCs), whereas those generated from later stages are called postimplantation epiblast stem cells (EpiSCs). These different classes of pluripotent stem cell have distinct culture requirements and gene expression programs, likely reflecting the dynamic development of the epiblast in the embryo. In this chapter we review current understanding of how the epiblast forms and relate this to the properties of derivative stem cells. We discuss whether ESCs and EpiSCs are true counterparts of different phases of epiblast development or are culture-generated phenomena. We also consider the proposition that early epiblast cells and ESCs may represent a naïve ground state without any prespecification of lineage choice, whereas later epiblasts and EpiSCs may be primed in favor of particular fates.  相似文献   

3.
Pluripotency manifests during mammalian development through formation of the epiblast, founder tissue of the embryo proper. Rodent pluripotent stem cells can be considered as two distinct states: na?ve and primed. Na?ve pluripotent stem cell lines are distinguished from primed cells by self-renewal in response to LIF signaling and MEK/GSK3 inhibition (LIF/2i conditions) and two active X chromosomes in female cells. In rodent cells, the na?ve pluripotent state may be accessed through at least three routes: explantation of the inner cell mass, somatic cell reprogramming by ectopic Oct4, Sox2, Klf4, and C-myc, and direct reversion of primed post-implantation-associated epiblast stem cells (EpiSCs). In contrast to their rodent counterparts, human embryonic stem cells and induced pluripotent stem cells more closely resemble rodent primed EpiSCs. A critical question is whether na?ve human pluripotent stem cells with bona fide features of both a pluripotent state and na?ve-specific features can be obtained. In this review, we outline current understanding of the differences between these pluripotent states in mice, new perspectives on the origins of na?ve pluripotency in rodents, and recent attempts to apply the rodent paradigm to capture na?ve pluripotency in human cells. Unraveling how to stably induce na?ve pluripotency in human cells will influence the full realization of human pluripotent stem cell biology and medicine.  相似文献   

4.
Cell lineage determination in the mouse   总被引:5,自引:0,他引:5  
During the peri-implantation development of the mouse embryo from the blastocyst through gastrulation, Pou5f1 (OCT-4) down-regulation is closely linked to the initial step of lineage allocation to extraembryonic and embryonic somatic tissues. Subsequently, differentiation of the lineage precursors is subject to inductive tissue interactions and intercellular signalling that regulate cell proliferation and the acquisition of lineage-specific morphological and molecular characteristics. A notable variation of this process of lineage specification is the persistence of Pou5f1 activity throughout the differentiation of the primordial germ cells, which may underpin their ability to produce pluripotent progeny either as stem cells (embryonic germ cells) in vitro or as gametes in vivo. Nevertheless, intercellular signalling still plays a critical role in the specification of the primordial germ cells. The findings that primordial germ cells can be induced from any epiblast cells and that they share common progenitors with other somatic cells provide compelling evidence for the absence of a pre-determined germ line in the mouse embryo.  相似文献   

5.
Human embryonic stem cells have unique value for regenerative medicine, as they are capable of differentiating into a broad variety of cell types. Therefore, defining the signalling pathways that control early cell fate decisions of pluripotent stem cells represents a major task. Moreover, modelling the early steps of embryonic development in vitro may provide the best approach to produce cell types with native properties. Here, we analysed the function of key developmental growth factors such as Activin, FGF and BMP in the control of early cell fate decisions of human pluripotent stem cells. This analysis resulted in the development and validation of chemically defined culture conditions for achieving specification of human embryonic stem cells into neuroectoderm, mesendoderm and into extra-embryonic tissues. Importantly, these defined culture conditions are devoid of factors that could obscure analysis of developmental mechanisms or render the resulting tissues incompatible with future clinical applications. Importantly, the growth factor roles defined using these culture conditions similarly drove differentiation of mouse epiblast stem cells derived from post implantation embryos, thereby reinforcing the hypothesis that epiblast stem cells share a common embryonic identity with human pluripotent stem cells. Therefore the defined growth factor conditions described here represent an essential step toward the production of mature cell types from pluripotent stem cells in conditions fully compatible with clinical use ant also provide a general approach for modelling the early steps of mammalian embryonic development.  相似文献   

6.
Rossant J 《Cell》2008,132(4):527-531
The recent derivation of pluripotent stem cell lines from a number of different sources, including reprogrammed adult somatic cells, raises the issue of the developmental equivalence of these different pluripotent states. At least two different states representing the epiblast progenitors in the blastocyst and the pluripotent progenitors of the later gastrulating embryo have been recognized. Understanding the initial developmental status of the different pluripotent lines is critical for defining starting conditions for differentiation toward therapeutically relevant cell types.  相似文献   

7.
Primordial germ cells (PGCs) are derived from a population of pluripotent epiblast cells in mice. However, little is known about when and how PGCs acquire the capacity to differentiate into functional germ cells, while keeping the potential to derive pluripotent embryonic germ cells and teratocarcinomas. In this investigation, we show that epiblast cells and PGCs can establish colonies of spermatogenesis after transfer into postnatal seminiferous tubules of surrogate infertile mice. Furthermore, we obtained normal fertile offspring by microinsemination using spermatozoa or spermatids derived from PGCs harvested from fetuses as early as 8.5 days post coitum. Thus, fetal male germ cell development is remarkably flexible, and the maturation process, from epiblast cells through PGCs to postnatal spermatogonia, can occur in the postnatal testicular environment. Primordial germ cell transplantation techniques will also provide a novel tool to assess the developmental potential of PGCs, such as those manipulated in vitro or recovered from embryos harboring lethal mutations.  相似文献   

8.
9.
10.
11.
The initial period of mammalian embryonic development is primarily devoted to cell commitment to the pluripotent lineage, as well as to the formation of extraembryonic tissues essential for embryo survival in utero. This phase of development is also characterized by extensive morphological transitions. Cells within the preimplantation embryo exhibit extraordinary cell plasticity and adaptation in response to experimental manipulation, highlighting the use of a regulative developmental strategy rather than a predetermined one resulting from the non-uniform distribution of maternal information in the cytoplasm. Consequently, early mammalian development represents a useful model to study how the three primary cell lineages; the epiblast, primitive endoderm (also referred to as the hypoblast) and trophoblast, emerge from a totipotent single cell, the zygote. In this review, we will discuss how the isolation and genetic manipulation of murine stem cells representing each of these three lineages has contributed to our understanding of the molecular basis of early developmental events.  相似文献   

12.
Silva J  Smith A 《Cell》2008,132(4):532-536
In this Essay, we argue that pluripotent epiblast founder cells in the embryo and embryonic stem (ES) cells in culture represent the ground state for a mammalian cell, signified by freedom from developmental specification or epigenetic restriction and capacity for autonomous self-replication. We speculate that cell-to-cell variation may be integral to the ES cell condition, safe-guarding self-renewal while continually presenting opportunities for lineage specification.  相似文献   

13.
From the point of view of regenerative potential, the most important cells are pluripotent stem cells (PSCs). Such cells must fulfill certain in vitro as well as in vivo criteria that have been established by work with PSCs isolated from embryos, which are known as embryonic stem cells (ESCs). According to these criteria, pluripotent stem cells should: (i) give rise to cells from all three germ layers, (ii) complete blastocyst development, and (iii) form teratomas after inoculation into experimental animals. Unfortunately, in contrast to immortalized embryonic ESC lines or induced PSCs (iPSCs), these last two criteria have thus far not been obtained in a reproducible manner for any potential PSC candidates isolated from adult tissues. There are two possible explanations for this failure. The first is that PSCs isolated from adult tissues are not fully pluripotent; the second is that there are some physiological mechanisms involved in keeping these cells quiescent in adult tissues that preclude their "unleashed proliferation", thereby avoiding the risk of teratoma formation. In this review we present an evidence that adult tissues contain remnants from development; a population of PSCs that is deposited in various organs as a backup for primitive stem cells, plays a role in rejuvenation of the pool of more differentiated tissue-committed stem cells (TCSCs), and is involved in organ regeneration. These cells share several markers with epiblast/germ line cells and have been named very small embryonic-like stem cells (VSELs). We suggest that, on one hand, VSELs maintain mammalian life span but, on the other hand, they may give rise to several malignancies if they mutate. We provide an evidence that the quiescent state of these cells in adult tissues, which prevents teratoma formation, is the result of epigenetic changes in some of the imprinted genes.  相似文献   

14.
One of the main criteria of pluripotency is ability of cell lines to differentiate into the germ line. Pluripotent stem cell lines in ground state of pluripotency differ from the lines in primed state by their ability to give rise to the mature gametes. To understand molecular mechanisms involved in regulation of different states of pluripotency we investigated the expression patterns of germ line specific genes in different type pluripotent stem cells and mouse and human embryonic teratocarcinoma cells. We found that pluripotent stem cells in vitro, in blastocyst and gonocytes at stage E13.5 had similar expression patterns in contrast to the epiblast cells at stage E6.5. Quantitative real time PCR analysis showed that Vasa/Ddx4 expression in mouse and human embryonic stem cells was significantly lower than in blastocyst and gonocytes. Moreover, Vasa/Ddx4 and E-ras expression was significantly higher in mouse embryonic stem cells than in human embryonic stem cells. Our analysis of germ line specific gene expression in differentiating mouse embryonic stem and embryonic germ cells as well as in mouse embryonic teratocarcinoma cells maintained under conditions promoting cell reprogramming from primed to ground state of pluripotency (2i + LIF) revealed that only pluripotent stem cells are able to regulate the expression level of Oct4 and Vasa/Ddx4 and restore initial ground state, while in embryonic teratocarcinoma cells the expression level of these genes remained unchanged. We suggest that expression patterns of germ lines specific genes, in particular of Vasa/Ddx4, can underlie the regulation of ground and primed states of pluripotency.  相似文献   

15.
Chou YF  Chen HH  Eijpe M  Yabuuchi A  Chenoweth JG  Tesar P  Lu J  McKay RD  Geijsen N 《Cell》2008,135(3):449-461
Pluripotent stem cell lines can be derived from blastocyst embryos, which yield embryonic stem cell lines (ES cells), as well as the postimplantation epiblast, which gives rise to epiblast stem cell lines (EpiSCs). Remarkably, ES cells and EpiSCs display profound differences in the combination of growth factors that maintain their pluripotent state. Molecular and functional differences between these two stem cell types demonstrate that the tissue of origin and/or the growth factor milieu may be important determinants of the stem cell identity. We explored how developmental stage of the tissue of origin and culture growth factor conditions affect the stem cell pluripotent state. Our findings indicate that novel stem cell lines, with unique functional and molecular properties, can be generated from murine blastocyst embryos. We demonstrate that the culture growth factor environment and cell-cell interaction play a critical role in defining several unique and stable stem cell ground states.  相似文献   

16.
Molecular and cellular analysis of early mammalian development is compromised by the experimental inaccessibility of the embryo. Pluripotent embryonic stem (ES) cells are derived from and retain many properties of the pluripotent founder population of the embryo, the inner cell mass. Experimental manipulation of these cells and their environment in vitro provides an opportunity for the development of differentiation systems which can be used for analysis of the molecular and cellular basis of embryogenesis. In this review we discuss strengths and weaknesses of the available ES cell differentiation methodologies and their relationship to events in vivo. Exploitation of these systems is providing novel insight into embryonic processes as diverse as cell lineage establishment, cell progression during differentiation, patterning, morphogenesis and the molecular basis for cell properties in the early mammalian embryo.  相似文献   

17.
Germ cells constitute a highly specialized cell population that is indispensable for the continuation and evolution of the species. Recently, several research groups have shown that these unique cells can be produced in vitro from pluripotent stem cells. Furthermore, live births of offspring using induced germ cells have been reported in one study. These results suggest that it may be possible to investigate germ cell development ex vivo and to establish novel reproductive technologies. To this end, it is critical to assess if gamete induction processes in vitro faithfully recapitulate normal germ cell development in vivo. Here, this issue is discussed with a focus on the germ line specification and the sex-specific development of pre- and postnatal germ cells. The aim of this paper is to concisely summarize the past progress and to present some future issues for the investigation into in vitro gamete production from pluripotent stem cells.  相似文献   

18.
The hourglass model of development postulates divergence in early and late embryo development bridged by a period of developmental constraint at mid‐embryogenesis. Recently, molecular support for the hourglass model of development has accumulated, with the emphasis on studies using zebrafish and Drosophila species. Across mammals, the hourglass model and specifically divergence in early development has thus far received little attention. Divergence in mammalian pre‐implantation development is particularly interesting because of its potential impact on derivation of pluripotent embryonic stem cells. Here, we review recent findings that support the hourglass model of development. We provide striking examples of variation in key events in mammalian peri‐implantation development and their potential consequences for pluripotency of embryonic stem cell lines, including mechanisms of cell signalling and differentiation, gene regulatory networks, X‐chromosome inactivation, and epigenetic regulation. The variation in these processes indicates divergence in early mammalian development as was postulated by the hourglass model of development. We discuss the naive and primed states of pluripotency in light of this developmental divergence and their implications for human pluripotent stem cell states.  相似文献   

19.
Pluripotent stem cells provide a platform to interrogate control elements that function to generate all cell types of the body. Despite their utility for modeling development and disease, the relationship of mouse and human pluripotent stem cell states to one another remains largely undefined. We have shown that mouse embryonic stem (ES) cells and epiblast stem cells (EpiSCs) are distinct, pluripotent states isolated from pre- and post-implantation embryos respectively. Human ES cells are different than mouse ES cells and share defining features with EpiSCs, yet are derived from pre-implantation human embryos. Here we show that EpiSCs can be routinely derived from pre-implantation mouse embryos. The preimplantation-derived EpiSCs exhibit molecular features and functional properties consistent with bona fide EpiSCs. These results provide a simple method for isolating EpiSCs and offer direct insight into the intrinsic and extrinsic mechanisms that regulate the acquisition of distinct pluripotent states.  相似文献   

20.
再生医学的目的是为了减轻组织损伤所致的不可逆性功能损害,多种类型的干细胞可促进神经再生,发挥治疗作用。近来,在骨髓和其他组织中发现了一种数量极少的极小胚胎样干细胞(VSELs),其分子标志为Oct-4+CXCR4+SSEA-1+Sca-1+lin-CD45-,它们可动员到外周血中。在给予动员剂或组织损伤等应激情况下可向损伤区迁移,现在认为它是高度迁移的外胚层/生殖系源性的干细胞群,具有多能干细胞特征,能分化为三个胚层细胞,综上所述,极小胚胎样干细胞可能通过促进神经再生修复中枢神经系统损伤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号