首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In Bacillus subtilis, the WalRK (YycFG) two‐component system controls peptidoglycan metabolism in exponentially growing cells while PhoPR controls the response to phosphate limitation. Here we examine the roles of WalRK and PhoPR in peptidoglycan metabolism in phosphate‐limited cells. We show that B. subtilis cells remain viable in a phosphate‐limited state for an extended period and resume growth rapidly upon phosphate addition, even in the absence of a PhoPR‐mediated response. Peptidoglycan synthesis occurs in phosphate‐limited wild‐type cells at ~27% the rate of exponentially growing cells, and at ~18% the rate of exponentially growing cells in the absence of PhoPR. In phosphate‐limited cells, the WalRK regulon genes yocH, cwlO(yvcE), lytE and ydjM are expressed in a manner that is dependent on the WalR recognition sequence and deleting these genes individually reduces the rate of peptidoglycan synthesis. We show that ydjM expression can be activated by PhoP~P in vitro and that PhoP occupies its promoter in phosphate‐limited cells. However, iseA(yoeB) expression cannot be repressed by PhoP~P in vitro, but can be repressed by non‐phosphorylated WalR in vitro. Therefore, we conclude that peptidoglycan metabolism is controlled by both WalRK and PhoPR in phosphate‐limited B. subtilis cells.  相似文献   

3.
Wall teichoic acids are anionic, phosphate-rich polymers linked to the peptidoglycan of gram-positive bacteria. In Bacillus subtilis, the predominant wall teichoic acid types are poly(glycerol phosphate) in strain 168 and poly(ribitol phosphate) in strain W23, and they are synthesized by the tag and tar gene products, respectively. Growing evidence suggests that wall teichoic acids are essential in B. subtilis; however, it is widely believed that teichoic acids are dispensable under phosphate-limiting conditions. In the work reported here, we carefully studied the dispensability of teichoic acid under phosphate-limiting conditions by constructing three new mutants. These strains, having precise deletions in tagB, tagF, and tarD, were dependent on xylose-inducible complementation from a distal locus (amyE) for growth. The tarD deletion interrupted poly(ribitol phosphate) synthesis in B. subtilis and represents a unique deletion of a tar gene. When teichoic acid biosynthetic proteins were depleted, the mutants showed a coccoid morphology and cell wall thickening. The new wall teichoic acid biogenesis mutants generated in this work and a previously reported tagD mutant were not viable under phosphate-limiting conditions in the absence of complementation. Cell wall analysis of B. subtilis grown under phosphate-limited conditions showed that teichoic acid contributed approximately one-third of the wall anionic content. These data suggest that wall teichoic acid has an essential function in B. subtilis that cannot be replaced by teichuronic acid.  相似文献   

4.
A study was made to determine whether factors other than the availability of phosphorus were involved in the regulation of synthesis of teichoic and teichuronic acids in Bacillus subtilis subsp. niger WM. First, the nature of the carbon source was varied while the dilution rate was maintained at about 0.3 h-1. Irrespective of whether the carbon source was glucose, glycerol, galactose, or malate, teichoic acid was the main anionic wall polymer whenever phosphorus was present in excess of the growth requirement, and teichuronic acid predominated in the walls of phosphate-limited cells. The effect of growth rate was studied by varying the dilution rate. However, only under phosphate limitation did the wall composition change with the growth rate: walls prepared from cells grown at dilution rates above 0.5 h-1 contained teichoic as well as teichuronic acid, despite the culture still being phosphate limited. The wall content of the cells did not vary with the nature of the growth limitation, but a correlation was observed between the growth rate and wall content. No indications were obtained that the composition of the peptidoglycan of B. subtilis subsp. niger WM was phenotypically variable.  相似文献   

5.
The study of the extracellular bacteriolytic enzymes of Lysobacter sp. showed that they can efficiently hydrolyze the peptidoglycan of gram-positive bacteria provided that there is an electrostatic interaction of these enzymes with the cell wall anionic polymers, teichoic and teichuronic acids in particular. The hydrolytic action of bacteriolytic enzymes on the cell wall largely depends on the negative charge of the teichoic and teichuronic acids rather than on their chemical composition.  相似文献   

6.
The relationship between wall anionic polymer synthesis and cell morphology has been studied in Bacillus subtilis 168 and its temperature-sensitive tagB mutant strain BR19-200B. The amount and type of anionic polymer synthesized varied under different growth conditions, as did the morphology of the bacteria. Anionic polymer synthesis was affected by the phosphate supply. It was also found that teichuronic acid synthesis was temperature-sensitive in wild-type bacteria. Teichuronic acid synthesis was affected by the tagB lesion, previously thought to affect only teichoic acid synthesis. A relationship was observed between synthesis of the alternative polymers, such that suppression of teichuronic acid synthesis is accompanied by an increase in the synthesis of teichoic acid. Variation in anionic polymer content was accompanied by variation in cell shape. Differences in shape were related to differences in total anionic polymer rather than to differences in individual polymer type.  相似文献   

7.
Conditions are described for the continuous culture of a derivative of Staphylococcus aureus H in a fully defined minimal medium in which cysteine is the sole amino acid. The effects of growth under various nutrient limitations on the composition and properties of the cell wall have been studied. The proportion of ribitol teichoic acid present in the wall, and the extent to which it is substituted with N-acetylglucosamine, varies in bacteria grown under different conditions as does the composition and extent of cross-linking of the peptidoglycan. Neither the derivative nor the original strain H produced teichuronic acid when grown under phosphate limitation.Non-Standard Abbreviation SDS Sodium dodecyl sulphate  相似文献   

8.
Cell wall polymers were measured both in the cells and in the cell-free medium of samples from steady-state chemostat cultures of Bacillus subtilis, growing at various rates under magnesium or phosphate limitation. The presence of both peptidoglycan and anionic wall polymers in the culture supernatant showed the occurrence of wall turnover in these cultures. Variable proportions of the total peptidoglycan present in the culture samples were found outside the cells in duplicate cultures, indicating that the rate of peptidoglycan turnover is variable in B. subtilis. Besides peptidoglycan, anionic wall polymers were detected in the culture supernatant: teichoic acid in magnesium-limited cultures and teichuronic acid in phosphate-limited cultures. In several samples, the ratio between the peptidoglycan and the anionic polymer concentrations was significantly lower in the extracellular fluid than in the walls. This divergency was attributed to the occurrence of direct secretion of anionic polymers after their synthesis.  相似文献   

9.
Uranyl acetate staining of thin sections allowed a distinction to be made between cell wall material that contains teichoic acid and that which contains teichuronic acid. The stain was used to study the pattern of wall assembly in Bacillus subtilis undergoing transitions between growth conditions leading to incorporation of the different anionic polymers. The results showed that new material is incorporated along the inner surface of the cylindrical region of the wall confirming, by a more direct method, results obtained earlier with teichoic acid specific phages. New material appears to be evenly distributed along the inner surface and no evidence was obtained for the presence of specific zones of incorporation.  相似文献   

10.
The study of the extracellular bacteriolytic enzymes of Lysobacter sp. showed that they can efficiently hydrolyze the peptidoglycan of gram-positive bacteria provided that there is an electrostatic interaction of these enzymes with the cell wall anionic polymers, teichoic and teichuronic acids in particular. The hydrolytic action of bacteriolytic enzymes on the cell wall largely depends on the negative charge of teichoic and teichuronic acids, rather than on their chemical composition.  相似文献   

11.
12.
A glycerol-requiring mutant ofBacillus subtilis formed irregular spheres and showed disturbed septum formation, when subjected to growth limitation by the supply of glycerol. Under phosphate limitation the cells were also round and developed asymmetric septa. In magnesium-limited cultures the cells contained a thickened wall, as compared with that of the parent strain grown under the same conditions. Chemical analysis revealed the presence of teichoic acid as the major anionic polymer in the wall of the glycerol-, as well as the magnesium-limited cells of the glycerol-requiringB. subtilis mutant.Under phosphate limitation teichuronic acid was the only anionic polymer present in the wall. Thus, in this respect, there were no apparent differences between mutant organisms and the parent strain when grown under magnesium and phosphate limitation, respectively and the observed morphological deviations could not be correlated with an altered anionic polymer content of the wall.  相似文献   

13.
Bacillus subtilis var. niger was grown in a chemostat with various growth limitations and at various growth rates. The wall content and composition of the organism grown under these conditions were determined. The wall content, expressed as a percentage of the dry weight of organisms, varied with the growth rate. Analysis of wall samples showed that their composition also varied, particularly with respect to the phosphorus content. Wall samples extracted with trichloroacetic acid under carefully controlled conditions were found to contain various amounts of phosphorus, this being present as a glycerol phosphate polymer containing hexose (glucose and in some cases galactose), i.e. a teichoic aid. Teichoic acids were present in the walls of organisms grown under all conditions except when phosphorus limited growth. Then a different anionic polymer, composed of glucuronic acid and N-acetylgalactosamine (a teichuronic acid), was present. Under the specific growth conditions at pH7.0 and 35 degrees C in a chemostat, teichoic acid and teichuronic acid appeared to be mutually exclusive.  相似文献   

14.
When grown in a chemostat under various nutritional conditions, cells of Bacillus subtilis W23 produce walls containing teichoic acid or teichuronic acid. The binding of Mg2+ to these walls and to the isolated anionic polymers in solution was measured by equilibrium dialysis. In solution the ribitol teichoic acid bound Mg2+ in the molar ratio Mg2+/P=1:1 with an apparent association constant (Kassoc.) of 0.61 X 10(3)M-1, and the teichuronic acid bound Mg2+ in the ratio Mg2+/CO2-=1.1, Kassoc.=0.3 X 10(3)M-1. Cell walls containing teichuronic acid exhibited closely similar binding properties to those containing teichoic acid; in both cases Mg2+ was bound in the ratio Mg/P or Mg/CO2- of 0.5:1 and with a greater affinity than displayed by the isolated polymers in solution. It was concluded that Mg2+ ions are bound bivalently between anionic centres in the walls and that the incorporation of teichoic acid or teichuronic acid into the walls gives rise to similar ion-binding and charged properties. The results are discussed in relation to the possible functions of anionic polymers in cell walls.  相似文献   

15.
生物矿化一蜡状芽孢杆菌聚金作用的研究   总被引:1,自引:3,他引:1  
介绍了生物矿化-蜡状芽孢杆菌聚金作用原理.生物活动对矿石的风化、淋滤和沉积都有很大的影响.蜡状芽孢杆菌聚金作用主要与蜡状芽孢杆菌细胞壁的化学成分和结构功能有关.原因是其细胞壁有一层很厚的网状的肽聚糖、多糖、核酸和蛋白质结构,并且在细胞壁表面存在的磷壁酸质和糖醛酸磷壁酸质连接到网状的肽聚糖上.磷壁酸质的磷酸二脂和糖醛酸磷壁酸质的羧基使细胞壁带负电荷,具有离子交换的性质,能与溶液中带正电荷的金属离子进行交换反应.这些过程是蜡状芽孢杆菌细胞壁聚集金的主要作用机制.  相似文献   

16.
The WalRK (YycFG) two‐component system co‐ordinates cell wall metabolism with growth by regulating expression of autolysins and proteins that modulate autolysin activity. Here we extend its role in cell wall metabolism by showing that WalR binds to 22 chromosomal loci in vivo. Among the newly identified genes of the WalRK bindome are those that encode the wall‐associated protein WapA, the penicillin binding proteins PbpH and Pbp5, the minor teichoic acid synthetic enzymes GgaAB and the regulators σI RsgI. The putative WalR binding sequence at many newly identified binding loci deviates from the previously defined consensus. Moreover, expression of many newly identified operons is controlled by multiple regulators. An unusual feature is that WalR binds to an extended DNA region spanning multiple open reading frames at some loci. WalRK directly activates expression of the sigIrsgI operon from a newly identified σA promoter and represses expression from the previously identified σI promoter. We propose that this regulatory link between WalRK and σI RsgI expression ensures that the endopeptidase requirement (CwlO or LytE) for cell viability is fulfilled during growth and under stress conditions. Thus the WalRK and σI RsgI regulatory systems cooperate to control cell wall metabolism in growing and stressed cells.  相似文献   

17.
nov-12, a novobiocin-resistant mutant of Bacillus licheniformis ATCC 9945, grows as long chains of cells, a characteristic of autolytic-deficient (Lyt-) mutants. Isolated walls from nov-12 autolyzed at a rate equal to 5% of that displayed by wild-type walls, thus confirming the Lyt- phenotype. Protein-free nov-12 walls displayed marked resistance to, and also failure to bind, added autolysin solubilized from wild-type walls. Comparison of isolated cell walls revealed a deficiency in teichuronic acid in the mutant. Lesser differences were observed in walls of this strain, including a reduction in galactose, an increase in the proportion of peptidoglycan, and small quantitative differences in peptidoglycan composition though the proportions of protein and teichoic acid were similar in walls of both strains. Autolytic sensitivity was studied in walls in which protein, teichoic acid, and teichuronic acid were removed successively by selective extraction procedures. Autolysis of wild-type walls was unaffected by removal or protein or teichoic acid, but teichuronic acid removal rendered wild-type walls as insensitive to autolysis as mutant walls had been throughout. Therefore, in this mutant, deficiency in teichuronic acid alone leads to the Lyt- phenotype and, hence, activity and binding of autolysin(s) are dependent upon teichuronic acid but not teichoic acid. Also, the potential rate of autolysis of cell walls in this organism was correlated with the proportion of teichuronic acid in the wall. The possible significance of these findings with respect to control of autolysis and cell separation is discussed.  相似文献   

18.
Major sites of metal binding in Bacillus licheniformis walls.   总被引:6,自引:2,他引:4       下载免费PDF全文
Isolated and purified walls of Bacillus licheniformis NCTC 6346 his contained peptidoglycan, teichoic acid, and teichuronic acid (0.36 mumol of diaminopimelic acid, 0.85 mumol of organic phosphorus, and 0.43 mumol of glucuronic acid per mg [dry weight] of walls, respectively). The walls also contained a total of 0.208 mumol of metal per mg. When these walls were subjected to metal-binding conditions (T. J. Beveridge and R. G. E. Murray, J. Bacteriol. 127:1502-1518, 1976) for nine metals, the amount of bound metal above background ranged from 0.910 mumol of Na to 0.031 mumol of Au per mg of walls. Most were in the 0.500-mumol mg-1 range. Electron-scattering profiles from unstained thin sections indicated that the metal was dispersed throughout the wall fabric. Mild alkali treatment extracted teichoic acid from the walls (97% based on phosphorus) but left the peptidoglycan and teichuronic acid intact. This treatment reduced their capacity for all metals but Au. Thin sections revealed that the wall thickness had been reduced by one-third, but metal was still dispersed throughout the wall fabric. Trichloroacetic acid treatment of the teichoic acid-less walls removed 95% of the teichuronic acid (based on glucuronic acid) but left the peptidoglycan intact (based on sedimentable diaminopimelic acid). The thickness of these walls was not further reduced, but little binding capacity remained (usually less than 10% of the original binding). The staining of these walls with Au produced a 14.4-nm repeat frequency within the peptidoglycan fabric. Sedimentation velocity experiments with the extracted teichuronic acid in the presence of metal confirmed it to be a potent metal-complexing polymer. These results indicated that teichoic and teichuronic acids are the prime sites of metal binding in B. licheniformis walls.  相似文献   

19.
The PhoPR‐mediated response to phosphate limitation (PHO response) in Bacillus subtilis subsp subtilis is amplified and maintained by reducing the level of Lipid VG composed of poly(glycerol phosphate), a wall teichoic acid (WTA) biosynthetic intermediate that inhibits PhoR autokinase activity. However, the reduction in Lipid VG level is effected by activated PhoP~P, raising the question of how the PHO response is first initiated. Furthermore, that WTA is composed of poly(ribitol phosphate) in Bacillus subtilis subsp spizizenii prompted an investigation of how the PHO response is regulated in that bacterium. We report that the PHO responses of B. subtilis subsp subtilis and subsp spizizenii are distinct. The PhoR kinases of the two B. subtilis subspecies are functionally equivalent and are activated either by the TagA/TarA or TagB/TarB enzyme product. However, they are inhibited by Lipid VG composed of poly(glycerol phosphate) but not by Lipid VR composed of poly(ribitol phosphate). Therefore, the distinctive PHO responses of these B. subtilis subspecies stem from the differential sensitivity of PhoR kinases to the polyol composition of Lipid V and from the genomic organization of WTA biosynthetic genes and the regulation of their expression.  相似文献   

20.
Preparations of membrane plus wall derived from Bacillus subtilis W23 were used to study the in vitro synthesis of peptidoglycan and teichoic acid and their linkage to the preexisting cell wall. The teichoic acid synthesis showed an ordered requirement for the incorporation of N-acetylglucosamine from uridine 5'-diphosphate (UDP)-N-acetylglucosamine followed by addition of glycerol phosphate from cytidine 5'-diphosphate (CDP)-glycerol and finally by addition of ribitol phosphate from CDP-ribitol. UDP-N-acetylglucosamine was not only required for the synthesis of the teichoic acid, but N-acetylglucosamine residues formed an integral part of the linkage unit attaching polyribitol phosphate to the cell wall. Synthesis of the teichoic acid was exquisitely sensitive to the antibiotic tunicamycin, and this was shown to be due to the inhibition of incorporation of N-acetylglucosamine units from UDP-N-acetylglucosamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号