首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
It has recently been proposed that losses in farmland habitat heterogeneity may have been a primary driver of the profound declines exhibited by many farmland bird species in recent decades. However, it has yet to be demonstrated which facets of heterogeneity and what spatial scales are most important for birds. Here we analyse the relationship between abundance and features of landscape heterogeneity at three spatial scales (1, 9 and 25 km2) for 32 bird species commonly associated with farmland. Heterogeneity was quantified using three contrasting indices reflecting 1) the spatial mixing of land uses, 2) variation in field sizes and 3) the density of field boundaries. The spatial mixing of land‐uses explained, on average, the most variation in, and was most likely to be positively associated with, abundance at all spatial scales. The majority of species (66–75%, depending on the spatial scale) were more common in heterogeneous landscapes overall; however, migrants, those under a high level of conservation concern and farmland specialist species tended to be less abundant in more heterogeneous landscapes at all scales. Ground‐nesting species were also more likely to be found in more homogeneous habitats than non‐ground‐nesters, but only at the finest spatial scale. Relationships between abundance and heterogeneity were generally consistent across spatial scales; however, species of high conservation concern had more variable associations compared with other species. These results highlight a potential role for farmland habitat heterogeneity in determining the abundance of many farmland species but suggest that population responses to an increase in heterogeneity would not be unanimously positive and would probably have negative impacts on some species, notably those that are already threatened.  相似文献   

4.
5.
Little is currently known on the microbial populations colonizing the sheep large intestine, despite their expected key role in host metabolism, physiology and immunity. This study reports the first characterization of the sheep faecal microbiota composition and functions, obtained through the application of a multi‐omic strategy. An optimized protocol was first devised for DNA extraction and amplification from sheep stool samples. Then, 16S rDNA sequencing, shotgun metagenomics and shotgun metaproteomics were applied to unravel taxonomy, genetic potential and actively expressed functions and pathways respectively. Under a taxonomic perspective, the sheep faecal microbiota appeared globally comparable to that of other ruminants, with Firmicutes being the main phylum. In functional terms, we detected 2097 gene and 441 protein families, finding that the sheep faecal microbiota was primarily involved in catabolism. We investigated carbohydrate transport and degradation activities and identified phylum‐specific pathways, such as methanogenesis for Euryarchaeota and acetogenesis for Firmicutes. Furthermore, our approach enabled the identification of proteins expressed by the eukaryotic component of the microbiota. Taken together, these findings unveil structure and role of the distal gut microbiota in sheep, and open the way to further studies aimed at elucidating its connections with management and dietary variables in sheep farming.  相似文献   

6.
7.
The oxygenation of polyunsaturated fatty acids such as arachidonic and linoleic acid through lipoxygenases (LOXs) and cyclooxygenases (COXs) leads to the production of bioactive lipids that are important both in the induction of acute inflammation and its resolution. Amongst the several isoforms of LOX that are expressed in mammals, 15‐LOX‐1 was shown to be important both in the context of inflammation, being expressed in cells of the immune system, and in epithelial cells where the enzyme has been shown to crosstalk with a number of important signalling pathways. This review looks into the latest developments in understanding the role of 15‐LOX‐1 in different disease states with emphasis on the emerging role of the enzyme in the tumour microenvironment as well as a newly re‐discovered form of cell death called ferroptosis. We also discuss future perspectives on the feasibility of use of this protein as a target for therapeutic interventions.  相似文献   

8.
The ability of Salmonella to survive and replicate within mammalian host cells involves the generation of a membranous compartment known as the Salmonella‐containing vacuole (SCV). Salmonella employs a number of effector proteins that are injected into host cells for SCV formation using its type‐3 secretion systems encoded in SPI‐1 and SPI‐2 (T3SS‐1 and T3SS‐2, respectively). Recently, we reported that S. Typhimurium requires T3SS‐1 and T3SS‐2 to survive in the model amoeba Dictyostelium discoideum. Despite these findings, the involved effector proteins have not been identified yet. Therefore, we evaluated the role of two major S. Typhimurium effectors SopB and SifA during D. discoideum intracellular niche formation. First, we established that S. Typhimurium resides in a vacuolar compartment within D. discoideum. Next, we isolated SCVs from amoebae infected with wild type or the ΔsopB and ΔsifA mutant strains of S. Typhimurium, and we characterised the composition of this compartment by quantitative proteomics. This comparative analysis suggests that S. Typhimurium requires SopB and SifA to modify the SCV proteome in order to generate a suitable intracellular niche in D. discoideum. Accordingly, we observed that SopB and SifA are needed for intracellular survival of S. Typhimurium in this organism. Thus, our results provide insight into the mechanisms employed by Salmonella to survive intracellularly in phagocytic amoebae.  相似文献   

9.
Salmonella enterica serovar Typhimurium (S. Tm) is a facultative intracellular pathogen that induces entry into non‐phagocytic cells by a Type III secretion system (TTSS) and cognate effector proteins. Upon host cell entry, S. Tm expresses a second TTSS and subverts intracellular trafficking to create a replicative niche – the Salmonella‐containing vacuole (SCV). SopE, a guanidyl exchange factor (GEF) for Rac1 and Cdc42, is translocated by the TTSS‐1 upon host cell contact and promotes entry through triggering of actin‐dependent ruffles. After host cell entry, the bulk of SopE undergoes proteasomal degradation. Here we show that a subfraction is however detectable on the nascent SCV membrane up to ~ 6 h post infection. Membrane localization of SopE and the closely related SopE2 differentially depend on the Rho‐GTPase‐binding GEF domain, and to some extent involves also the unstructured N‐terminus. SopE localizes transiently to the early SCV, dependent on continuous synthesis and secretion by the TTSS‐1 during the intracellular state. Mutant strains lacking SopE or SopE2 are attenuated in early intracellular replication, while complementation restores this defect. Hence, the present study reveals an unanticipated role for SopE and SopE2 in establishing the Salmonella replicative niche, and further emphasizes the importance of entry effectors in later stages of host‐cell manipulation.  相似文献   

10.
11.
12.
P1B‐ATPases are among the most common resistance factors to metal‐induced stress. Belonging to the superfamily of P‐type ATPases, they are capable of exporting transition metal ions at the expense of adenosine triphosphate (ATP) hydrolysis. P1B‐ATPases share a conserved structure of three cytoplasmic domains linked by a transmembrane domain. In addition, they possess a unique class of domains located at the N‐terminus. In bacteria, these domains are primarily associated with metal binding and either occur individually or as serial copies of each other. Within this study, the roles of the two adjacent metal‐binding domains (MBDs) of CopA, the copper export ATPase of Escherichia coli were investigated. From biochemical and physiological data, we deciphered the protein‐internal pathway of copper and demonstrate the distal N‐terminal MBD to possess a function analogous to the metallochaperones of related prokaryotic copper resistance systems, that is its involvement in the copper transfer to the membrane‐integral ion‐binding sites of CopA. In contrast, the proximal domain MBD2 has a regulatory role by suppressing the catalytic activity of CopA in absence of copper. Furthermore, we propose a general functional divergence of tandem MBDs in P1B‐ATPases, which is governed by the length of the inter‐domain linker.  相似文献   

13.
Chromogranin B (CHGB) is the major matrix protein in human catecholamine storage vesicles. CHGB genetic variation alters catecholamine secretion and blood pressure. Here, effective Chgb protein under‐expression was achieved by siRNA in PC12 cells, resulting in ~ 48% fewer secretory granules on electron microscopy, diminished capacity for catecholamine uptake (by ~ 79%), and a ~ 73% decline in stores available for nicotinic cholinergic‐stimulated secretion. In vivo, loss of Chgb in knockout mice resulted in a ~ 35% decline in chromaffin granule abundance and ~ 44% decline in granule diameter, accompanied by unregulated catecholamine release into plasma. Over‐expression of CHGB was achieved by transduction of a CHGB‐expressing lentivirus, resulting in ~ 127% elevation in CHGB protein, with ~ 122% greater abundance of secretory granules, but only ~ 14% increased uptake of catecholamines, and no effect on nicotinic‐triggered secretion. Human CHGB protein and its proteolytic fragments inhibited nicotinic‐stimulated catecholamine release by ~ 72%. One conserved‐region CHGB peptide inhibited nicotinic‐triggered secretion by up to ~ 41%, with partial blockade of cationic signal transduction. We conclude that bi‐directional quantitative derangements in CHGB abundance result in profound changes in vesicular storage and release of catecholamines. When processed and released extra‐cellularly, CHGB proteolytic fragments exert a feedback effect to inhibit catecholamine secretion, especially during nicotinic cholinergic stimulation.

  相似文献   


14.
The MRE11‐RAD50‐NBS1 (MRN) complex is essential for the detection of DNA double‐strand breaks (DSBs) and initiation of DNA damage signaling. Here, we show that Rad17, a replication checkpoint protein, is required for the early recruitment of the MRN complex to the DSB site that is independent of MDC1 and contributes to ATM activation. Mechanistically, Rad17 is phosphorylated by ATM at a novel Thr622 site resulting in a direct interaction of Rad17 with NBS1, facilitating recruitment of the MRN complex and ATM to the DSB, thereby enhancing ATM signaling. Repetition of these events creates a positive feedback for Rad17‐dependent activation of MRN/ATM signaling which appears to be a requisite for the activation of MDC1‐dependent MRN complex recruitment. A point mutation of the Thr622 residue of Rad17 leads to a significant reduction in MRN/ATM signaling and homologous recombination repair, suggesting that Thr622 phosphorylation is important for regulation of the MRN/ATM signaling by Rad17. These findings suggest that Rad17 plays a critical role in the cellular response to DNA damage via regulation of the MRN/ATM pathway.  相似文献   

15.
16.
17.
Protoplast regeneration from extruded cytoplasm of the multi‐cellular marine green alga Microdictyon umbilicatum (Velley) Zanardini (Cladophorales, Anadyomenaceae) was investigated. The early process of protoplast formation is comprised of two steps: agglutination of cell organelles into protoplasmic masses followed by generation of a temporary enclosing envelope around them. Agglutination of cell organelles was mediated by a lectin‐carbohydrate complementary system. Three sugars, D‐galactosamine, D‐glucosamine, and a‐D‐mannose, inhibited the agglutination process, and three complementary lectins for the above sugars, peanut agglutinin, Ricinus communis agglutinin and concanavalin A, bound to the surfaces of chloroplasts. Agglutination assay using human erythrocytes showed the presence of lectins specific for the above sugars in the algal vacuolar sap. The lectin has been purified by the use of D‐mannose agarose affinity column. Its Molecular weight was shown to be 36,000 dalton by SDS‐PAGE gel electrophoresis. When the basic regeneration process was accomplished, the cells chose one of two developmental strategies; about 70% of one‐celled protoplasts transformed into reproductive cells within two weeks after wounding, while others began cell division and grew into typical Microdictyon plants. Quadriflagellate swarmers were liberated from the reproductive cells, and they germinated into mature plants  相似文献   

18.
Phytochelatin synthases (PCS) play key roles in plant metal tolerance. They synthesize small metal‐binding peptides, phytochelatins, under conditions of metal excess. Respective mutants are strongly cadmium and arsenic hypersensitive. However, their ubiquitous presence and constitutive expression had long suggested a more general function of PCS besides metal detoxification. Indeed, phytochelatin synthase1 from Arabidopsis thaliana (AtPCS1) was later implicated in non‐host resistance. The two different physiological functions may be attributable to the two distinct catalytic activities demonstrated for AtPCS1, that is the dipeptidyl transfer onto an acceptor molecule in phytochelatin synthesis, and the proteolytic deglycylation of glutathione conjugates. In order to test this hypothesis and to possibly separate the two biological roles, we expressed a phylogenetically distant PCS from Caenorhabditis elegans in an AtPCS1 mutant. We confirmed the involvement of AtPCS1 in non‐host resistance by showing that plants lacking the functional gene develop a strong cell death phenotype when inoculated with the potato pathogen Phytophthora infestans. Furthermore, we found that the C. elegans gene rescues phytochelatin synthesis and cadmium tolerance, but not the defect in non‐host resistance. This strongly suggests that the second enzymatic function of AtPCS1, which remains to be defined in detail, is underlying the plant immunity function.  相似文献   

19.
20.
Woody plant encroachment is a major land management issue. Woody removal often aims to restore the original grassy ecosystem, but few studies have assessed the role of woody removal on ecosystem functions and biodiversity at global scales. We collected data from 140 global studies and evaluated how different woody plant removal methods affected biodiversity (plant and animal diversity) and ecosystem functions (plant production, hydrological function, soil carbon) across global rangelands. Our results indicate that the impact of removal is strongly context dependent, varying with the specific response variable, removal method, and traits of the target species. Over all treatments, woody plant removal increased grass biomass and total groundstorey diversity. Physical and chemical removal methods increased grass biomass and total groundstorey biomass (i.e., non‐woody plants, including grass biomass), but burning reduced animal diversity. The impact of different treatment methods declined with time since removal, particularly for total groundstorey biomass. Removing pyramid‐shaped woody plants increased total groundstorey biomass and hydrological function but reduced total groundstorey diversity. Environmental context (e.g., aridity and soil texture) indirectly controlled the effect of removal on biomass and biodiversity by influencing plant traits such as plant shape, allelopathic, or roots types. Our study demonstrates that a one‐size‐fits‐all approach to woody plant removal is not appropriate, and that consideration of woody plant identity, removal method, and environmental context is critical for optimizing removal outcomes. Applying this knowledge is fundamental for maintaining diverse and functional rangeland ecosystems as we move toward a drier and more variable climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号