共查询到20条相似文献,搜索用时 0 毫秒
1.
MATTI WAHLSTEN NATALIA BATTCHIKOVA ATEEQ UR REHMAN IMRE VASS MAARIT KARONEN JARI SINKKONEN PERTTU PERMI KAARINA SIVONEN EVA‐MARI ARO YAGUT ALLAHVERDIYEVA 《Plant, cell & environment》2014,37(6):1371-1381
Screening of 55 different cyanobacterial strains revealed that an extract from Nostoc XPORK14A drastically modifies the amplitude and kinetics of chlorophyll a fluorescence induction of Synechocystis PCC 6803 cells. After 2 d exposure to the Nostoc XPORK14A extract, Synechocystis PCC 6803 cells displayed reduced net photosynthetic activity and significantly modified electron transport properties of photosystem II under both light and dark conditions. However, the maximum oxidizable amount of P700 was not strongly affected. The extract also induced strong oxidative stress in Synechocystis PCC 6803 cells in both light and darkness. We identified the secondary metabolite of Nostoc XPORK14A causing these pronounced effects on Synechocystis cells. Mass spectrometry and nuclear magnetic resonance analyses revealed that this compound, designated as M22, has a non‐peptide structure. We propose that M22 possesses a dual‐action mechanism: firstly, by photogeneration of reactive oxygen species in the presence of light, which in turn affects the photosynthetic machinery of Synechocystis PCC 6803; and secondly, by altering the in vivo redox status of cells, possibly through inhibition of protein kinases. 相似文献
2.
Photosynthesis Research - The effect of chloramphenicol, an often used protein synthesis inhibitor, in photosynthetic systems was studied on the rate of Photosystem II (PSII) photodamage in the... 相似文献
3.
Ammonia has long been known to be toxic for many photosynthetic organisms; however, the target for its toxicity remains elusive. Here, we show that in the cyanobacterium Synechocystis sp. strain PCC 6803, ammonia triggers a rapid photodamage of photosystem II (PSII). Whereas wild-type cells can cope with this damage by turning on the FtsH2-dependent PSII repair cycle, the FtsH2-deficient mutant is highly sensitive and loses PSII activity at millimolar concentration of ammonia. Ammonia-triggered PSII destruction is light dependent and occurs already at low photon fluence rates. Experiments with monochromatic light showed that ammonia-promoted PSII photoinhibition is executed by wavebands known to directly destroy the manganese cluster in the PSII oxygen-evolving complex, suggesting that the oxygen-evolving complex may be a direct target for ammonia toxicity. 相似文献
4.
5.
El Bissati K Delphin E Murata N Etienne A Kirilovsky D 《Biochimica et biophysica acta》2000,1457(3):229-242
The structural changes associated to non-photochemical quenching in cyanobacteria is still a matter of discussion. The role of phycobilisome and/or photosystem mobility in this mechanism is a point of interest to be elucidated. Changes in photosystem II fluorescence induced by different quality of illumination (state transitions) or by strong light were characterized at different temperatures in wild-type and mutant cells, that lacked polyunsaturated fatty acids, of the cyanobacterium Synechocystis PCC 6803. The amplitude and the rate of state transitions decreased by lowering temperature in both strains. Our results support the hypothesis that a movement of membrane complexes and/or changes in the oligomerization state of these complexes are involved in the mechanism of state transitions. The quenching induced by strong blue light which was not associated to D1 damage and photoinhibition, did not depend on temperature or on the membrane state. Thus, the mechanism involved in the formation of this type of quenching seems to be unrelated to the movement of membrane complexes. Our results strongly support the idea that the mechanism involved in the fluorescence quenching induced by light 2 is different from that involved in strong blue light induced quenching. 相似文献
6.
Accumulation of poly-beta-hydroxybutyrate (PHB) by photoautotrophic microorganisms makes it possible to reduce the production cost of PHB. The Synechocystis sp. PCC6803 cells grown in BG11 medium under balanced, nitrogen-starved or phosphorus-starved conditions were observed by transmission electron microscope. Many electron-transparent granules in the nitrogen-starved cells had a diameter up to 0.8 micron. In contrast, the number of granules in the normally cultured cells decreased obviously and only zero to three much smaller granules were in each cell. These granules were similar to those in bacteria capable of synthesizing PHB. They were proved to be PHB by gas chromatography after subjecting the cells to methanolysis. Effects of glucose as carbon source and light intensity on PHB accumulation in Synechocystis sp. PCC6803 under nitrogen-starved cultivation were further studied. Glucose and illumination promoted cell growth but did not favor PHB synthesis. After 7 days of growth under nitrogen-starved photoautotrophic conditions, the intracellular level of PHB was up to 4.1% of cellular dry weight and the PHB concentration in the culture broth was 27 mg/l. 相似文献
7.
Hernandez-Prieto MA Tibiletti T Abasova L Kirilovsky D Vass I Funk C 《Biochimica et biophysica acta》2011,1807(9):1143-1151
The five small CAB-like proteins (ScpA-E) of the cyanobacterium Synechocystis sp. PCC 6803 belong to the family of stress-induced light-harvesting-like proteins, but are constitutively expressed in a mutant deficient of Photosystem I (PSI). Using absorption, fluorescence and thermoluminescence measurements this PSI-less strain was compared with a mutant, in which all SCPs were additionally deleted. Depletion of SCPs led to structural rearrangements in Photosystem II (PSII): less photosystems were assembled; and in these, the Q(B) site was modified. Despite the lower amount of PSII, the SCP-deficient cells contained the same amount of phycobilisomes (PBS) as the control. Although the excess PBS were functionally disconnected, their fluorescence was quenched under high irradiance by the activated Orange Carotenoid Protein (OCP). Additionally the amount of OCP, but not of the iron-stress induced protein (isiA), was higher in this SCP-depleted mutant compared with the control. As previously described, the lack of SCPs affects the chlorophyll biosynthesis (Vavilin, D., Brune, D. C., Vermaas, W. (2005) Biochim Biophys Acta 1708, 91-101). We demonstrate that chlorophyll synthesis is required for efficient PSII repair and that it is partly impaired in the absence of SCPs. At the same time, the amount of chlorophyll also seems to influence the expression of ScpC and ScpD. 相似文献
8.
The Photosystem II complex (PSII) is susceptible to inactivation by strong light, and the inactivation caused by strong light is referred to as photoinactivation or photoinhibition. In photosynthetic organisms, photoinactivated PSII is rapidly repaired and the extent of photoinactivation reflects the balance between the light-induced damage (photodamage) to PSII and the repair of PSII. In this study, we examined these two processes separately and quantitatively under stress conditions in the cyanobacterium Synechocystis sp. PCC 6803. The rate of photodamage was proportional to light intensity over a range of light intensities from 0 to 2000 μE m−2 s−1, and this relationship was not affected by environmental factors, such as salt stress, oxidative stress due to H2O2, and low temperature. The rate of repair also depended on light intensity. It was high under weak light and reached a maximum of 0.1 min−1 at 300 μE m−2 s−1. By contrast to the rate of photodamage, the rate of repair was significantly reduced by the above-mentioned environmental factors. Pulse-labeling experiments with radiolabeled methionine revealed that these environmental factors inhibited the synthesis de novo of proteins. Such proteins included the D1 protein which plays an important role in the photodamage-repair cycle. These observations suggest that the repair of PSII under environmental stress might be the critical step that determines the outcome of the photodamage-repair cycle. 相似文献
9.
Degradation of the D1 protein of the Photosystem II (PS II) complex was studied in the Fad6/desA::Kmr mutant of a cyanobacterium Synechocystis sp. PCC 6803. The D1 protein of the mutant was degraded during solubilization of thylakoid membranes with SDS at 0°C in darkness, giving rise to the 23 kDa amino-terminal and 10 kDa carboxy-terminal fragments. Moreover, the D2 and CP43 proteins were also degraded under such conditions of solubilization. Degradation of the D2 protein generated 24, 17 and 15.5 kDa fragments, and degradation of the CP43 protein gave rise to 28, 27.5, 26 and 16 kDa fragments. The presence of Ca2+ and urea protected the D1, D2 and CP43 proteins against degradation. Degradation of the D1 protein was also inhibited by the presence of a serine protease inhibitor suggesting that the putative protease involved belonged to the serine class of proteases. The protease had the optimum activity at pH 7.5; it was active at low temperature (0°C) but a brief heating (65°C) during solubilization destroyed the activity. Interestingly, the protease was active in isolated thylakoid membranes in complete darkness, suggesting that proteolysis may be a non-ATP-dependent process. Proteolytic activity present in thylakoid membranes seemed to reside outside of the PS II complex, as demonstrated by the 2-dimensional gel electrophoresis. These results represent the first (in vitro) demonstration of strong activity of a putative ATP-independent serine-type protease that causes degradation of the D1 protein in cyanobacterial thylakoid membranes without any induction by visible or UV light, by active oxygen species or by any chemical treatments. 相似文献
10.
The half-life times of photosystem I and II proteins were determined using (15)N-labeling and mass spectrometry. The half-life times (30-75h for photosystem I components and <1-11h for the large photosystem II proteins) were similar when proteins were isolated from monomeric vs. oligomeric complexes on Blue-Native gels, suggesting that the two forms of both photosystems can interchange on a timescale of <1h or that only one form of each photosystem exists in thylakoids in vivo. The half-life times of proteins associated with either photosystem generally were unaffected by the absence of Small Cab-like proteins. 相似文献
11.
To gain insight in the lifetimes of photosystem II (PSII) chlorophyll and proteins, a combined stable isotope labeling (15N)/mass spectrometry method was used to follow both old and new pigments and proteins. Photosystem I-less Synechocystis cells were grown to exponential or post-exponential phase and then diluted in BG-11 medium with [15N]ammonium and [15N]nitrate. PSII was isolated, and the masses of PSII protein fragments and chlorophyll were determined. Lifetimes of PSII components ranged from 1.5 to 40 h, implying that at least some of the proteins and chlorophyll turned over independently from each other. Also, a significant amount of nascent PSII components accumulated in thylakoids when cells were in post-exponential growth phase. In a mutant lacking small Cab-like proteins (SCPs), most PSII protein lifetimes were unaffected, but the lifetime of chlorophyll and the amount of nascent PSII components that accumulated were decreased. In the absence of SCPs, one of the PSII biosynthesis intermediates, the monomeric PSII complex without CP43, was missing. Therefore, SCPs may stabilize nascent PSII protein complexes. Moreover, upon SCP deletion, the rate of chlorophyll synthesis and the accumulation of early tetrapyrrole precursors were drastically reduced. When [14N]aminolevulinic acid (ALA) was supplemented to 15N-BG-11 cultures, the mutant lacking SCPs incorporated much more exogenous ALA into chlorophyll than the control demonstrating that ALA biosynthesis was impaired in the absence of SCPs. This illustrates the major effects that nonstoichiometric PSII components such as SCPs have on intermediates and assembly but not on the lifetime of PSII proteins. 相似文献
12.
Masahiko Ikeuchi Vipula K. Shukla Himadri B. Pakrasi Yorinao noue 《Molecular genetics and genomics : MGG》1995,249(6):622-628
PsbI is a small, integral membrane protein component of photosystem II (PSII), a pigment-protein complex in cyanobacteria, algae and higher plants. To understand the function of this protein, we have isolated the psbI gene from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and determined its nucleotide sequence. Using an antibiotic-resistance cartridge to disrupt and replace the psbI gene, we have created mutants of Synechocystis 6803 that lack the PsbI protein. Analysis of these mutants revealed that absence of the PsbI protein results in a 25–30% loss of PSII activity. However, other PSII polypeptides are present in near wild-type amounts, indicating that no significant destabilization of the PSII complex has occurred. These results contrast with recently reported data indicating that PsbI-deficient mutants of the eukaryotic alga Chlamydomonas reinhardtii are highly light-sensitive and have a significantly lower (80–90%) titer of the PSII complex. In Synechocystis 6803, PsbI-deficient cells appear to be slightly more photosensitive than wild-type cells, suggesting that this protein, while not essential for PSII biogenesis or function, plays a role in the optimization of PSII activity. 相似文献
13.
In most oxygenic phototrophs, including cyanobacteria, two independent enzymes catalyze the reduction of protochlorophyllide to chlorophyllide, which is the penultimate step in chlorophyll (Chl) biosynthesis. One is light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR) and the second type is dark-operative protochlorophyllide oxidoreductase (DPOR). To clarify the roles of both enzymes, we assessed synthesis and accumulation of Chl-binding proteins in mutants of cyanobacterium Synechocystis PCC 6803 that either completely lack LPOR or possess low levels of the active enzyme due to its ectopic regulatable expression. The LPOR-less mutant grew photoautotrophically in moderate light and contained a maximum of 20 % of the wild-type (WT) Chl level. Both Photosystem II (PSII) and Photosystem I (PSI) were reduced to the same degree. Accumulation of PSII was mostly limited by the synthesis of antennae CP43 and especially CP47 as indicated by the accumulation of reaction center assembly complexes. The phenotype of the LPOR-less mutant was comparable to the strain lacking DPOR that also contained <25 % of the wild-type level of PSII and PSI when cultivated under light-activated heterotrophic growth conditions. However, in the latter case, we detected no reaction center assembly complexes, indicating that synthesis was almost completely inhibited for all Chl-proteins, including the D1 and D2 proteins. 相似文献
14.
Cheregi O Sicora C Kós PB Barker M Nixon PJ Vass I 《Biochimica et biophysica acta》2007,1767(6):820-828
The photosystem two (PSII) complex found in oxygenic photosynthetic organisms is susceptible to damage by UV-B irradiation and undergoes repair in vivo to maintain activity. Until now there has been little information on the identity of the enzymes involved in repair. In the present study we have investigated the involvement of the FtsH and Deg protease families in the degradation of UV-B-damaged PSII reaction center subunits, D1 and D2, in the cyanobacterium Synechocystis 6803. PSII activity in a DeltaFtsH (slr0228) strain, with an inactivated slr0228 gene, showed increased sensitivity to UV-B radiation and impaired recovery of activity in visible light after UV-B exposure. In contrast, in DeltaDeg-G cells, in which all the three deg genes were inactivated, the damage and recovery kinetics were the same as in the WT. Immunoblotting showed that the loss of both the D1 and D2 proteins was retarded in DeltaFtsH (slr0228) during UV-B exposure, and the extent of their restoration during the recovery period was decreased relative to the WT. However, in the DeltaDeg-G cells the damage and recovery kinetics of D1 and D2 were the same as in the WT. These data demonstrate a key role of FtsH (slr0228), but not the Deg proteases, for the repair of PS II during and following UV-B radiation at the step of degrading both of the UV-B damaged D1 and D2 reaction center subunits. 相似文献
15.
To determine the fluorescence properties of cyanobacterial Photosystem I (PS I) in relatively intact systems, fluorescence emission from 20 to 295 K and polarization at 77 K have been measured from phycobilisomes-less thylakoids of Synechocystis sp. PCC 6803 and a mutant strain lacking Photosystem II (PS II). At 295 K, the fluorescence maxima are 686 nm in the wild type from PS I and PS II and at 688 nm from PS I in the mutant. This emission is characteristic of bulk antenna chlorophylls (Chls). The 690-nm fluorescence component of PS I is temperature independent. For wild-type and mutant, 725-nm fluorescence increases by a factor of at least 40 from 295 to 20 K. We model this temperature dependence assuming a small number of Chls within PS I, emitting at 725 nm, with an energy level below that of the reaction center, P700. Their excitation transfer rate to P700 decreases with decreasing temperature increasing the yield of 725-nm fluorescence.Fluorescence excitation spectra of polarized emission from low-energy Chls were measured at 77 and 295 K on the mutant lacking PS II. At excitation wavelengths longer than 715 nm, 760-nm emission is highly polarized indicating either direct excitation of the emitting Chls with no participation in excitation transfer or total alignment of the chromophores. Fluorescence at 760 nm is unpolarized for excitation wavelengths shorter than 690 nm, inferring excitation transfer between Chls before 760-nm fluorescence occurs.Our measurements illustrate that: 1) a single group of low-energy Chls (F725) of the core-like PS I complex in cyanobacteria shows a strongly temperature-dependent fluorescence and, when directly excited, nearly complete fluorescence polarization, 2) these properties are not the result of detergent-induced artifacts as we are examining intact PS I within the thylakoid membrane of S. 6803, and 3) the activation energy for excitation transfer from F725 Chls to P700 is less than that of F735 Chls in green plants; F725 Chls may act as a sink to locate excitations near P700 in PS I.Abbreviations Chl
chlorophyll
- BChl
bacteriochlorophyll
- PS
Photosystem
-
S. 6803
Synechocystis sp. PCC 6803
- PGP
potassium glycerol phosphate 相似文献
16.
We investigated the spectrum of secreted proteins in the cyanobacterium Synechocystis, and identified these proteins by amino-terminal sequencing. In total, seven sequences have been determined that corresponded to the proteins Sll0044, Sll1694, Sll1891, Slr0924, Slr0841, Slr0168, and Slr1855. The protein Sll1694 of 18 kDa that formed one of two major bands on SDS-PAGE was identified as cyanobacterial pilin, PilA. The amino-terminal sequence of another protein that formed a second major band was blocked. The analysis of the data revealed that five of seven proteins had distinct putative leader sequences for secretion. 相似文献
17.
Kufryk G Hernandez-Prieto MA Kieselbach T Miranda H Vermaas W Funk C 《Photosynthesis research》2008,95(2-3):135-145
The cyanobacterial small CAB-like proteins (SCPs) are one-helix proteins with compelling similarity to the first and third
transmembrane helix of proteins belonging to the CAB family of light-harvesting complex proteins in plants. The SCP proteins
are transiently expressed at high light intensity and other stress conditions but their exact function remains largely unknown.
Recently we showed association of ScpD with light-stressed, monomeric Photosystem II in Synechocystis sp. PCC 6803 (Yao et al. J Biol Chem 282:267–276, 2007). Here we show that ScpB associates with Photosystem II at normal
growth conditions. Moreover, upon introduction of a construct into Synechocystis so that ScpB is expressed continuously under normal growth conditions, ScpE was detected under non-stressed conditions as
well, and was copurified with tagged ScpB and Photosystem II. We also report on a one-helix protein, Slr1544, that is somewhat
similar to the SCPs and whose gene is cotranscribed with that of ScpD; Slr1544 is another member of the extended light-harvesting-like
(Lil) protein family, and we propose to name it LilA.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Galyna Kufryk and Miguel Hernandez-Prieto have contributed equally to this work. 相似文献
18.
The photosystem two (PSII) complex found in oxygenic photosynthetic organisms is susceptible to damage by UV-B irradiation and undergoes repair in vivo to maintain activity. Until now there has been little information on the identity of the enzymes involved in repair. In the present study we have investigated the involvement of the FtsH and Deg protease families in the degradation of UV-B-damaged PSII reaction center subunits, D1 and D2, in the cyanobacterium Synechocystis 6803. PSII activity in a ΔFtsH (slr0228) strain, with an inactivated slr0228 gene, showed increased sensitivity to UV-B radiation and impaired recovery of activity in visible light after UV-B exposure. In contrast, in ΔDeg-G cells, in which all the three deg genes were inactivated, the damage and recovery kinetics were the same as in the WT. Immunoblotting showed that the loss of both the D1 and D2 proteins was retarded in ΔFtsH (slr0228) during UV-B exposure, and the extent of their restoration during the recovery period was decreased relative to the WT. However, in the ΔDeg-G cells the damage and recovery kinetics of D1 and D2 were the same as in the WT. These data demonstrate a key role of FtsH (slr0228), but not the Deg proteases, for the repair of PS II during and following UV-B radiation at the step of degrading both of the UV-B damaged D1 and D2 reaction center subunits. 相似文献
19.
Amino acid sequence of photosystem I subunit IV from the cyanobacterium Synechocystis PCC 6803 总被引:1,自引:0,他引:1
We describe here the complete amino acid sequence of photosystem I subunit IV from Synechocystis 6803. The molecular mass of 8.0 kDa is lower than in higher plants and Chlamydomonas, due to the lack of a characteristic, proline-rich, N-terminal sequence. The remaining sequence exhibits a good conservation, with a hydrophilic and strongly basic N-tenninal head followed by two hydrophobic domains. There is no possibility of classical membrane-spanning alpha helices. This component is likely to be one of the most stroma accessible subunits of photosystem I. 相似文献
20.
Masahiko Ikeuchi Vipula K. Shukla Himadri B. Pakrasi Yorinao noue 《Molecular & general genetics : MGG》1995,249(6):622-628
PsbI is a small, integral membrane protein component of photosystem II (PSII), a pigment-protein complex in cyanobacteria, algae and higher plants. To understand the function of this protein, we have isolated the psbI gene from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and determined its nucleotide sequence. Using an antibiotic-resistance cartridge to disrupt and replace the psbI gene, we have created mutants of Synechocystis 6803 that lack the PsbI protein. Analysis of these mutants revealed that absence of the PsbI protein results in a 25–30% loss of PSII activity. However, other PSII polypeptides are present in near wild-type amounts, indicating that no significant destabilization of the PSII complex has occurred. These results contrast with recently reported data indicating that PsbI-deficient mutants of the eukaryotic alga Chlamydomonas reinhardtii are highly light-sensitive and have a significantly lower (80–90%) titer of the PSII complex. In Synechocystis 6803, PsbI-deficient cells appear to be slightly more photosensitive than wild-type cells, suggesting that this protein, while not essential for PSII biogenesis or function, plays a role in the optimization of PSII activity. 相似文献