首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Temozolomide (TMZ) has been widely used in the treatment of glioblastoma (GBM), although inherent or acquired resistance restricts the application. This study was aimed to evaluate the efficacy of sulforaphane (SFN) to TMZ‐induced apoptosis in GBM cells and the potential mechanism. Biochemical assays and subcutaneous tumor establishment were used to characterize the function of SFN in TMZ‐induced apoptosis. Our results revealed that β‐catenin and miR‐21 were concordantly expressed in GBM cell lines, and SFN significantly reduced miR‐21 expression through inhibiting the Wnt/β‐catenin/TCF4 pathway. Furthermore, down‐regulation of miR‐21 enhanced the pro‐apoptotic efficacy of TMZ in GBM cells. Finally, we observed that SFN strengthened TMZ‐mediated apoptosis in a miR‐21‐dependent manner. In conclusion, SFN effectively enhances TMZ‐induced apoptosis by inhibiting miR‐21 via Wnt/β‐catenin signaling in GBM cells. These findings support the use of SFN for potential therapeutic approach to overcome TMZ resistance in GBM treatment.

  相似文献   


2.
The 19‐transmembrane, multisubunit γ‐secretase complex generates the amyloid β‐peptide (Aβ) of Alzheimer's disease (AD) by an unusual intramembrane proteolysis of the β‐amyloid precursor protein. The complex, which similarly processes many other type 1 transmembrane substrates, is composed of presenilin, Aph1, nicastrin, and presenilin enhancer (Pen‐2), all of which are necessary for proper complex maturation and enzymatic activity. Obtaining a high‐resolution atomic structure of the intact complex would greatly aid the rational design of compounds to modulate activity but is a very difficult task. A complementary method is to generate structures for each individual subunit to allow one to build a model of the entire complex. Here, we describe a method by which recombinant human Pen‐2 can be purified from bacteria to > 95% purity at milligram quantities per liter, utilizing a maltose binding protein tag to both increase solubility and facilitate purification. Expressing the same construct in mammalian cells, we show that the large N‐terminal maltose binding protein tag on Pen‐2 still permits incorporation into the complex and subsequent presenilin‐1 endoproteolysis, nicastrin glycosylation and proteolytic activity. These new methods provide valuable tools to study the structure and function of Pen‐2 and the γ‐secretase complex.

  相似文献   


3.
Glucose is the main energy substrate for neurons, and ketone bodies are known to be alternative substrates. However, the capacity of ketone bodies to support different neuronal functions is still unknown. Thus, a change in energy substrate from glucose alone to a combination of glucose and β‐hydroxybutyrate might change neuronal function as there is a known coupling between metabolism and neurotransmission. The purpose of this study was to shed light on the effects of the ketone body β‐hydroxybutyrate on glycolysis and neurotransmission in cultured murine glutamatergic neurons. Previous studies have shown an effect of β‐hydroxybutyrate on glucose metabolism, and the present study further specified this by showing attenuation of glycolysis when β‐hydroxybutyrate was present in these neurons. In addition, the NMDA receptor‐induced calcium responses in the neurons were diminished in the presence of β‐hydroxybutyrate, whereas a direct effect of the ketone body on transmitter release was absent. However, the presence of β‐hydroxybutyrate augmented transmitter release induced by the KATP channel blocker glibenclamide, thus giving an indirect indication of the involvement of KATP channels in the effects of ketone bodies on transmitter release.

  相似文献   


4.
Drebrin is a major F‐actin binding protein in dendritic spines that is critically involved in the regulation of dendritic spine morphogenesis, pathology, and plasticity. In this study, we aimed to identify a novel drebrin‐binding protein involved in spine morphogenesis and synaptic plasticity. We confirmed the beta subunit of Ca2+/calmodulin‐dependent protein kinase II (CaMKIIβ) as a drebrin‐binding protein using a yeast two‐hybrid system, and investigated the drebrin–CaMKIIβ relationship in dendritic spines using rat hippocampal neurons. Drebrin knockdown resulted in diffuse localization of CaMKIIβ in dendrites during the resting state, suggesting that drebrin is involved in the accumulation of CaMKIIβ in dendritic spines. Fluorescence recovery after photobleaching analysis showed that drebrin knockdown increased the stable fraction of CaMKIIβ, indicating the presence of drebrin‐independent, more stable CaMKIIβ. NMDA receptor activation also increased the stable fraction in parallel with drebrin exodus from dendritic spines. These findings suggest that CaMKIIβ can be classified into distinct pools: CaMKIIβ associated with drebrin, CaMKIIβ associated with post‐synaptic density (PSD), and CaMKIIβ free from PSD and drebrin. CaMKIIβ appears to be anchored to a protein complex composed of drebrin‐binding F‐actin during the resting state. NMDA receptor activation releases CaMKIIβ from drebrin resulting in CaMKIIβ association with PSD.

  相似文献   


5.
The β‐amyloid precursor protein (APP) has been extensively studied for its role as the precursor of the β‐amyloid protein (Aβ) of Alzheimer's disease. However, the normal function of APP remains largely unknown. This article reviews studies on the structure, expression and post‐translational processing of APP, as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms.

  相似文献   


6.
7.
Mitochondrial glutathione (GSH) is a key endogenous antioxidant and its maintenance is critical for cell survival. Here, we generated stable NSC34 motor neuron‐like cell lines over‐expressing the mitochondrial GSH transporter, the 2‐oxoglutarate carrier (OGC), to further elucidate the importance of mitochondrial GSH transport in determining neuronal resistance to oxidative stress. Two stable OGC cell lines displayed specific increases in mitochondrial GSH content and resistance to oxidative and nitrosative stressors, but not staurosporine. Inhibition of transport through OGC reduced levels of mitochondrial GSH and resensitized the stable cell lines to oxidative stress. The stable OGC cell lines displayed significant up‐regulation of the anti‐apoptotic protein, B cell lymphoma 2 (Bcl‐2). This result was reproduced in parental NSC34 cells by chronic treatment with GSH monoethylester, which specifically increased mitochondrial GSH levels. Knockdown of Bcl‐2 expression decreased mitochondrial GSH and resensitized the stable OGC cells to oxidative stress. Finally, endogenous OGC was co‐immunoprecipitated with Bcl‐2 from rat brain lysates in a GSH‐dependent manner. These data are the first to show that increased mitochondrial GSH transport is sufficient to enhance neuronal resistance to oxidative stress. Moreover, sustained and specific enhancement of mitochondrial GSH leads to increased Bcl‐2 expression, a required mechanism for the maintenance of increased mitochondrial GSH levels.

  相似文献   


8.
9.
Parkinson's disease is the second most common neurodegenerative disease and its pathogenesis is closely associated with oxidative stress. Deposition of aggregated α‐synuclein (α‐Syn) occurs in familial and sporadic forms of Parkinson's disease. Here, we studied the effect of oligomeric α‐Syn on one of the major markers of oxidative stress, lipid peroxidation, in primary co‐cultures of neurons and astrocytes. We found that oligomeric but not monomeric α‐Syn significantly increases the rate of production of reactive oxygen species, subsequently inducing lipid peroxidation in both neurons and astrocytes. Pre‐incubation of cells with isotope‐reinforced polyunsaturated fatty acids (D‐PUFAs) completely prevented the effect of oligomeric α‐Syn on lipid peroxidation. Inhibition of lipid peroxidation with D‐PUFAs further protected cells from cell death induced by oligomeric α‐Syn. Thus, lipid peroxidation induced by misfolding of α‐Syn may play an important role in the cellular mechanism of neuronal cell loss in Parkinson's disease.

  相似文献   


10.
11.
The orphan nuclear receptor estrogen‐related receptor gamma (ERRγ) is highly expressed in the nervous system during embryogenesis and in adult brains, but its physiological role in neuronal development remains unknown. In this study, we evaluated the relevance of ERRγ in regulating dopaminergic (DAergic) phenotype and the corresponding signaling pathway. We used retinoic acid (RA) to differentiate human neuroblastoma SH‐SY5Y cells. RA induced neurite outgrowth of SH‐SY5Y cells with an increase in DAergic neuron‐like properties, including up‐regulation of tyrosine hydroxylase, dopamine transporter, and vesicular monoamine transporter 2. ERRγ, but not ERRα, was up‐regulated by RA, and participated in RA effect on SH‐SY5Y cells. ERRγ over‐expression enhanced mature DAergic neuronal phenotype with neurite outgrowth as with RA treatment; and RA‐induced increase in DAergic phenotype was attenuated by silencing ERRγ expression. ERRγ appears to have a crucial role in morphological and functional regulation of cells that is selective for DAergic neurons. Polo‐like kinase 2 was up‐regulated in ERRγ‐over‐expressing SH‐SY5Y cells, which was involved in phosphorylation of glycogen synthase kinase 3β and resulting downstream activation of nuclear factor of activated T cells. The likely involvement of ERRγ in regulating the DAergic neuronal phenotype makes this orphan nuclear receptor a novel target for understanding DAergic neuronal differentiation.

  相似文献   


12.
Alzheimer β‐amyloid (Aβ) peptides can self‐organize into oligomeric ion channels with high neurotoxicity potential. Cholesterol is believed to play a key role in this process, but the molecular mechanisms linking cholesterol and amyloid channel formation have so far remained elusive. Here, we show that the short Aβ22‐35 peptide, which encompasses the cholesterol‐binding domain of Aβ, induces a specific increase of Ca2+ levels in neural cells. This effect is neither observed in calcium‐free medium nor in cholesterol‐depleted cells, and is inhibited by zinc, a blocker of amyloid channel activity. Double mutations V24G/K28G and N27R/K28R in Aβ22‐35 modify cholesterol binding and abrogate channel formation. Molecular dynamic simulations suggest that cholesterol induces a tilted α‐helical topology of Aβ22‐35. This facilitates the establishment of an inter‐peptide hydrogen bond network involving Asn‐27 and Lys‐28, a key step in the octamerization of Aβ22‐35 which proceeds gradually until the formation of a perfect annular channel in a phosphatidylcholine membrane. Overall, these data give mechanistic insights into the role of cholesterol in amyloid channel formation, opening up new therapeutic options for Alzheimer's disease.

  相似文献   


13.
Alzheimer's disease (AD) is a neurodegenerative disorder that represents the most common type of dementia among elderly people. Amyloid beta (Aβ) peptides in extracellular Aβ plaques, produced from the amyloid precursor protein (APP) via sequential processing by β‐ and γ‐secretases, impair hippocampal synaptic plasticity, and cause cognitive dysfunction in AD patients. Here, we report that Aβ peptides also impair another form of synaptic plasticity; cerebellar long‐term depression (LTD). In the cerebellum of commonly used AD mouse model, APPswe/PS1dE9 mice, Aβ plaques were detected from 8 months and profound accumulation of Aβ plaques was observed at 18 months of age. Biochemical analysis revealed relatively high levels of APP protein and Aβ in the cerebellum of APPswe/PS1dE9 mice. At pre‐Aβ accumulation stage, LTD induction, and motor coordination are disturbed. These results indicate that soluble Aβ oligomers disturb LTD induction and cerebellar function in AD mouse model.

  相似文献   


14.
Accumulating evidence indicates that activated microglia contribute to the neuropathology involved in many neurodegenerative diseases and after traumatic injury to the CNS. The cytokine transforming growth factor‐beta 1 (TGF‐β1), a potent deactivator of microglia, should have the potential to reduce microglial‐mediated neurodegeneration. It is therefore perplexing that high levels of TGF‐β1 are found in conditions where microglia are chronically activated. We hypothesized that TGF‐β1 signaling is suppressed in activated microglia. We therefore activated primary rat microglia with lipopolysaccharide (LPS) and determined the expression of proteins important to TGF‐β1 signaling. We found that LPS treatment decreased the expression of the TGF‐β receptors, TβR1 and TβR2, and reduced protein levels of Smad2, a key mediator of TGF‐β signaling. LPS treatment also antagonized the ability of TGF‐β to suppress expression of pro‐inflammatory cytokines and to induce microglial cell death. LPS treatment similarly inhibited the ability of the TGF‐β related cytokine, Activin‐A, to down‐regulate expression of pro‐inflammatory cytokines and to induce microglial cell death. Together, these data suggest that microglial activators may oppose the actions of TGF‐β1, ensuring continued microglial activation and survival that eventually may contribute to the neurodegeneration prevalent in chronic neuroinflammatory conditions.

  相似文献   


15.
A lesion to the rat rubrospinal tract is a model for traumatic spinal cord lesions and results in atrophy of the red nucleus neurons, axonal dieback, and locomotor deficits. In this study, we used adeno‐associated virus (AAV)‐mediated over‐expression of BAG1 and ROCK2‐shRNA in the red nucleus to trace [by co‐expression of enhanced green fluorescent protein (EGFP)] and treat the rubrospinal tract after unilateral dorsal hemisection. We investigated the effects of targeted gene therapy on neuronal survival, axonal sprouting of the rubrospinal tract, and motor recovery 12 weeks after unilateral dorsal hemisection at Th8 in rats. In addition to the evaluation of BAG1 and ROCK2 as therapeutic targets in spinal cord injury, we aimed to demonstrate the feasibility and the limits of an AAV‐mediated protein over‐expression versus AAV.shRNA‐mediated down‐regulation in this traumatic CNS lesion model. Our results demonstrate that BAG1 and ROCK2‐shRNA both promote neuronal survival of red nucleus neurons and enhance axonal sprouting proximal to the lesion.

  相似文献   


16.
17.
18.
Cu/Zn‐superoxide dismutase is misfolded in familial and sporadic amyotrophic lateral sclerosis, but it is not clear how this triggers endoplasmic reticulum (ER) stress or other pathogenic processes. Here, we demonstrate that mutant SOD1 (mSOD1) is predominantly found in the cytoplasm in neuronal cells. Furthermore, we show that mSOD1 inhibits secretory protein transport from the ER to Golgi apparatus. ER‐Golgi transport is linked to ER stress, Golgi fragmentation and axonal transport and we also show that inhibition of ER‐Golgi trafficking preceded ER stress, Golgi fragmentation, protein aggregation and apoptosis in cells expressing mSOD1. Restoration of ER‐Golgi transport by over‐expression of coatomer coat protein II subunit Sar1 protected against inclusion formation and apoptosis, thus linking dysfunction in ER‐Golgi transport to cellular pathology. These findings thus link several cellular events in amyotrophic lateral sclerosis into a single mechanism occurring early in mSOD1 expressing cells.

  相似文献   


19.
The receptor for advanced glycation end products (RAGE) gene expresses two major alternative splicing isoforms, full‐length membrane‐bound RAGE (mRAGE) and secretory RAGE (esRAGE). Both isoforms play important roles in Alzheimer's disease (AD) pathogenesis, either via interaction of mRAGE with β‐amyloid peptide (Aβ) or inhibition of the mRAGE‐activated signaling pathway. In the present study, we showed that heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and Transformer2β‐1 (Tra2β‐1) were involved in the alternative splicing of mRAGE and esRAGE. Functionally, two factors had an antagonistic effect on the regulation. Glucose deprivation induced an increased ratio of mRAGE/esRAGE via up‐regulation of hnRNP A1 and down‐regulation of Tra2β‐1. Moreover, the ratios of mRAGE/esRAGE and hnRNP A1/Tra2β‐1 were increased in peripheral blood mononuclear cells from AD patients. The results provide a molecular basis for altered splicing of mRAGE and esRAGE in AD pathogenesis.

  相似文献   


20.
In this report, we describe the localization of diacylglycerol lipase‐α (DAGLα) in nuclei from adult cortical neurons, as assessed by double‐immunofluorescence staining of rat brain cortical sections and purified intact nuclei and by western blot analysis of subnuclear fractions. Double‐labeling assays using the anti‐DAGLα antibody and NeuN combined with Hoechst staining showed that only nuclei of neuronal origin were DAGLα positive. At high resolution, DAGLα‐signal displayed a punctate pattern in nuclear subdomains poor in Hoechst's chromatin and lamin B1 staining. In contrast, SC‐35‐ and NeuN‐signals (markers of the nuclear speckles) showed a high overlap with DAGLα within specific subdomains of the nuclear matrix. Among the members of the phospholipase C‐β (PLCβ) family, PLCβ1, PLCβ2, and PLCβ4 exhibited the same distribution with respect to chromatin, lamin B1, SC‐35, and NeuN as that described for DAGLα. Furthermore, by quantifying the basal levels of 2‐arachidonoylglycerol (2‐AG) by liquid chromatography and mass spectrometry (LC‐MS), and by characterizing the pharmacology of its accumulation, we describe the presence of a mechanism for 2‐AG production, and its PLCβ/DAGLα‐dependent biosynthesis in isolated nuclei. These results extend our knowledge about subcellular distribution of neuronal DAGLα, providing biochemical grounds to hypothesize a role for 2‐AG locally produced within the neuronal nucleus.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号