首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental evolution has provided little support for the hypothesis that the narrow diets of herbivorous insects reflect trade‐offs in performance across hosts; selection lines can sometimes adapt to an inferior novel host without a decline in performance on the ancestral host. An alternative approach for detecting trade‐offs would be to measure adaptation decay after selection is relaxed, that is, when populations newly adapted to a novel host are reverted to the ancestral one. Lines of the seed beetle Callosobruchus maculatus rapidly adapted to a poor host (lentil); survival in lentil seeds increased from 2% to > 90% in < 30 generations. After the lines had reached a plateau with respect to survival in lentil, sublines were reverted to the ancestral host, mung bean. Twelve generations of reversion had little effect on performance in lentil, but after 25–35 generations, the reverted lines exhibited lower survival, slower development and smaller size. The most divergent pair of lines was then assayed on both lentil and mung bean. Performance on lentil was again much poorer in the reverted line than in the nonreverted one, but the lines performed equally well on mung bean. Moreover, the performance of the nonreverted line on mung bean remained comparable to that of the original mung‐bean population. Our results thus present a paradox: loss of adaptation to lentil following reversion implies a trade‐off, but the continued strong performance of lentil‐adapted lines on mung bean does not. Genomic comparisons of the reverted, nonreverted and ancestral lines may resolve this paradox and determine the importance of selection vs. drift in causing a loss of adaptation following reversion.  相似文献   

2.
Individual variation in resource acquisition should have consequences for life‐history traits and trade‐offs between them because such variation determines how many resources can be allocated to different life‐history functions, such as growth, survival and reproduction. Since resource acquisition can vary across an individual's life cycle, the consequences for life‐history traits and trade‐offs may depend on when during the life cycle resources are limited. We tested for differential and/or interactive effects of variation in resource acquisition in the burying beetle Nicrophorus vespilloides. We designed an experiment in which individuals acquired high or low amounts of resources across three stages of the life cycle: larval development, prior to breeding and the onset of breeding in a fully crossed design. Resource acquisition during larval development and prior to breeding affected egg size and offspring survival, respectively. Meanwhile, resource acquisition at the onset of breeding affected size and number of both eggs and offspring. In addition, there were interactive effects between resource acquisition at different stages on egg size and offspring survival. However, only when females acquired few resources at the onset of breeding was there evidence for a trade‐off between offspring size and number. Our results demonstrate that individual variation in resource acquisition during different stages of the life cycle has important consequences for life‐history traits but limited effects on trade‐offs. This suggests that in species that acquire a fixed‐sized resource at the onset of breeding, the size of this resource has larger effects on life‐history trade‐offs than resources acquired at earlier stages.  相似文献   

3.
4.
Rapid evolution in response to environmental change will likely be a driving force determining the distribution of species across the biosphere in coming decades. This is especially true of microorganisms, many of which may evolve in step with warming, including phytoplankton, the diverse photosynthetic microbes forming the foundation of most aquatic food webs. Here we tested the capacity of a globally important, model marine diatom Thalassiosira pseudonana, for rapid evolution in response to temperature. Selection at 16 and 31°C for 350 generations led to significant divergence in several temperature response traits, demonstrating local adaptation and the existence of trade‐offs associated with adaptation to different temperatures. In contrast, competitive ability for nitrogen (commonly limiting in marine systems), measured after 450 generations of temperature selection, did not diverge in a systematic way between temperatures. This study shows how rapid thermal adaptation affects key temperature and nutrient traits and, thus, a population's long‐term physiological, ecological, and biogeographic response to climate change.  相似文献   

5.
The animal gut plays a central role in tackling two common ecological challenges, nutrient shortage and food‐borne parasites, the former by efficient digestion and nutrient absorption, the latter by acting as an immune organ and a barrier. It remains unknown whether these functions can be independently optimised by evolution, or whether they interfere with each other. We report that Drosophila melanogaster populations adapted during 160 generations of experimental evolution to chronic larval malnutrition became more susceptible to intestinal infection with the opportunistic bacterial pathogen Pseudomonas entomophila. However, they do not show suppressed immune response or higher bacterial loads. Rather, their increased susceptibility to P. entomophila is largely mediated by an elevated predisposition to loss of intestinal barrier integrity upon infection. These results may reflect a trade‐off between the efficiency of nutrient extraction from poor food and the protective function of the gut, in particular its tolerance to pathogen‐induced damage.  相似文献   

6.
Identifying the genetic architecture underlying complex phenotypes is a notoriously difficult problem that often impedes progress in understanding adaptive eco‐evolutionary processes in natural populations. Host–parasite interactions are fundamentally important drivers of evolutionary processes, but a lack of understanding of the genes involved in the host's response to chronic parasite insult makes it particularly difficult to understand the mechanisms of host life history trade‐offs and the adaptive dynamics involved. Here, we examine the genetic basis of gastrointestinal nematode (Trichostrongylus tenuis) burden in 695 red grouse (Lagopus lagopus scotica) individuals genotyped at 384 genome‐wide SNPs. We first use genome‐wide association to identify individual SNPs associated with nematode burden. We then partition genome‐wide heritability to identify chromosomes with greater heritability than expected from gene content, due to harbouring a multitude of additive SNPs with individually undetectable effects. We identified five SNPs on five chromosomes that accounted for differences of up to 556 worms per bird, but together explained at best 4.9% of the phenotypic variance. These SNPs were closely linked to genes representing a range of physiological processes including the immune system, protein degradation and energy metabolism. Genome partitioning indicated genome‐wide heritability of up to 29% and three chromosomes with excess heritability of up to 4.3% (total 8.9%). These results implicate SNPs and novel genomic regions underlying nematode burden in this system and suggest that this phenotype is somewhere between being based on few large‐effect genes (oligogenic) and based on a large number of genes with small individual but large combined effects (polygenic).  相似文献   

7.
To mine possibly hidden causal single‐nucleotide polymorphisms (SNPs) of melanoma, we investigated the association of SNPs in 76 M/G1 transition genes with melanoma risk using our published genome‐wide association study (GWAS) data set with 1804 melanoma cases and 1026 cancer‐free controls. We found multiple SNPs with P < 0.01 and performed validation studies for 18 putative functional SNPs in PSMB9 in two other GWAS data sets. Two SNPs (rs1351383 and rs2127675) were associated with melanoma risk in the GenoMEL data set (P = 0.013 and 0.004, respectively), but failed in validation using the Australian data set. Genotype–phenotype analysis revealed these two SNPs were significantly correlated with mRNA expression level of PSMB9. Further experiments revealed that SNP rs2071480, which is in high LD with rs1351383 and rs2127675, may have a weak effect on the promoter activity of PSMB9. Taken together, our data suggested that functional variants in PSMB9 may contribute to melanoma susceptibility.  相似文献   

8.
The seasonal availability of food resources is an important factor shaping the life‐history strategies of organisms. During times of nutritional restriction, physiological trade‐offs can induce periods of immune suppression, thereby increasing susceptibility to infectious disease. Our goal was to provide a conceptual framework describing how the endemic level bovine brucellosis (Brucella abortus) may be maintained in Yellowstone bison based on the seasonality of food resources and the life‐history strategies of the host and pathogen. Our analysis was based on active B. abortus infection (measured via bacterial culture), nutritional indicators (measured as metabolites and hormones in plasma), and carcass measurements of 402 slaughtered bison. Data from Yellowstone bison were used to investigate (1) whether seasonal changes in diet quality affect nutritional condition and coincide with the reproductive needs of female bison; (2) whether active B. abortus infection and infection intensities vary with host nutrition and nutritional condition; and (3) the evidence for seasonal changes in immune responses, which may offer protection against B. abortus, in relation to nutritional condition. Female bison experienced a decline in nutritional condition during winter as reproductive demands of late gestation increased while forage quality and availability declined. Active B. abortus infection was negatively associated with bison age and nutritional condition, with the intensity of infection negatively associated with indicators of nutrition (e.g., dietary protein and energy) and body weight. Data suggest that protective cell‐mediated immune responses may be reduced during the B. abortus transmission period, which coincides with nutritional insufficiencies and elevated reproductive demands during spring. Our results illustrate how seasonal food restriction can drive physiological trade‐offs that suppress immune function and create infection and transmission opportunities for pathogens.  相似文献   

9.
Traditional selection for sow reproductive longevity is ineffective due to low heritability and late expression of the trait. Incorporation of DNA markers into selection programs is potentially a more practical approach for improving sow lifetime productivity. Using a resource population of crossbred gilts, we explored pleiotropic sources of variation that influence age at puberty and reproductive longevity. Of the traits recorded before breeding, only age at puberty significantly affected the probability that females would produce a first parity litter. The genetic variance explained by 1‐Mb windows of the sow genome, compared across traits, uncovered regions that influence both age at puberty and lifetime number of parities. Allelic variants of SNPs located on SSC5 (27–28 Mb), SSC8 (36–37 Mb) and SSC12 (1.2–2 Mb) exhibited additive effects and were associated with both early expression of puberty and a greater than average number of lifetime parities. Combined analysis of these SNPs showed that an increase in the number of favorable alleles had positive impact on reproductive longevity, increasing number of parities by up to 1.36. The region located on SSC5 harbors non‐synonymous alleles in the arginine vasopressin receptor 1A (AVPR1A) gene, a G‐protein‐coupled receptor associated with social and reproductive behaviors in voles and humans and a candidate for the observed effects. This region is characterized by high levels of linkage disequilibrium in different lines and could be exploited in marker‐assisted selection programs across populations to increase sow reproductive longevity.  相似文献   

10.
Telomeres in human fibroblasts shorten progressively during in vitro culturing and trigger replicative senescence. Furthermore, shortened telomeres can be used as biomarkers of disease. These observations have led to the suggestion that telomere dynamics may also be associated with viability and selection for life history variation in non‐human taxa. Model systems to examine this suggestion would particularly benefit from the coexistence of multiple phenotypes within the same species with different life history trade‐offs, since those could be compared in terms of telomere characteristics. This scenario also provokes the classic question of why one morph does not have marginally higher fitness and replaces the others. One explanation is that different morphs have different reproductive tactics with equal relative fitness. In Australian painted dragons (Ctenophorus pictus), males differ in head color, the presence or absence of a gular bib, and reproductive expenditure. Red males out‐compete yellow males in dominance contests, while yellow males copulate quickly and have higher success in sperm competition than red males. Males with bibs better defend partners against rival matings, at the cost of loss of body condition. We show that yellow‐headed and bib‐less males have longer telomeres than red, blue and bibbed males, suggesting that telomere length is positively associated with higher investment into self‐maintenance and less reproductive expenditure.  相似文献   

11.
Because of the frequent breakdown of major resistance (R) genes, identification of new partial R genes against rice blast disease is an important goal of rice breeding. In this study, we used a core collection of the Rice Diversity Panel II (C‐RDP‐II), which contains 584 rice accessions and are genotyped with 700 000 single‐nucleotide polymorphism (SNP) markers. The C‐RDP‐II accessions were inoculated with three blast strains collected from different rice‐growing regions in China. Genome‐wide association study identified 27 loci associated with rice blast resistance (LABRs). Among them, 22 LABRs were not associated with any known blast R genes or QTLs. Interestingly, a nucleotide‐binding site leucine‐rich repeat (NLR) gene cluster exists in the LABR12 region on chromosome 4. One of the NLR genes is highly conserved in multiple partially resistant rice cultivars, and its expression is significantly up‐regulated at the early stages of rice blast infection. Knockout of this gene via CRISPR‐Cas9 in transgenic plants partially reduced blast resistance to four blast strains. The identification of this new non‐strain specific partial R gene, tentatively named rice blast Partial Resistance gene 1 (PiPR1), provides genetic material that will be useful for understanding the partial resistance mechanism and for breeding durably resistant cultivars against blast disease of rice.  相似文献   

12.
We collected gravid king ratsnakes (Elaphe carinata) from three geographically separated populations in Chenzhou (CZ), Lishui (LS) and Dinghai (DH) of China to study the geographical variation in female reproductive traits and trade‐offs between the size and number of eggs. Not all reproductive traits varied among the three populations. Of the traits examined, five (egg‐laying date, post‐oviposition body mass, clutch size, egg mass and egg width) differed among the three populations. The egg‐laying date, ranging from late June to early August, varied among populations in a geographically continuous trend, with females at the most northern latitude (DH) laying eggs latest, and females at the most southern latitude (CZ) laying eggs earliest. Such a trend was less evident or even absent in the other traits that differed among the three populations. CZ and DH females, although separated by a distance of approximately 1100 km as the crow flies, were similar to each other in most traits examined. LS females were distinguished from CZ and DH females by the fact that they laid a greater number of eggs, but these were smaller. The egg size–number trade‐off was evident in each of the three populations and, at a given level of relative fecundity, egg mass was significantly greater in the DH population than in the LS population. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 701–709.  相似文献   

13.
X. Li  P. Xu  C. Zhang  C. Sun  X. Li  X. Han  M. Li  R. Qiao 《Animal genetics》2019,50(2):162-165
Pig umbilical hernia (UH) affects pig welfare and brings considerable economic loss to the pig industry. To date, the molecular mechanisms underlying pig UH are still poorly understood. To identify potential loci for susceptibility to this disease, we performed a genome‐wide association study in an Erhualian × Shaziling F2 intercross population. A total of 45 animals were genotyped using Illumina Porcine SNP60 BeadChips. We observed a SNP (rs80993347) located in the calpain‐9 (CAPN9) gene on Sus scrofa chromosome 14 that was significantly associated with UH (= 1.97 × 10?10). Then, we identified a synonymous mutation rs321865883 (g.20164T>C) in exon 10 of the CAPN9 gene that distinguished two affected individuals (CC) from their normal full‐sibs (TC). Finally, quantitative polymerase chain reaction was explored to investigate the mRNA expression profile of the CAPN9 gene in 12 tissues in Yorkshire pigs at different developmental stages (3, 90 and 180 days). CAPN9 showed high expression levels in the gastrointestinal tract at these three growth stages. The results of this study indicate that the CAPN9 gene might be implicated in UH. Further studies are required to establish a role of CAPN9 in pig UH.  相似文献   

14.
A key component to understanding the evolutionary response to a changing climate is linking underlying genetic variation to phenotypic variation in stress response. Here, we use a genome‐wide association approach (GWAS) to understand the genetic architecture of calcification rates under simulated climate stress. We take advantage of the genomic gradient across the blue mussel hybrid zone (Mytilus edulis and Mytilus trossulus) in the Gulf of Maine (GOM) to link genetic variation with variance in calcification rates in response to simulated climate change. Falling calcium carbonate saturation states are predicted to negatively impact many marine organisms that build calcium carbonate shells – like blue mussels. We sampled wild mussels and measured net calcification phenotypes after exposing mussels to a ‘climate change’ common garden, where we raised temperature by 3°C, decreased pH by 0.2 units and limited food supply by filtering out planktonic particles >5 μm, compared to ambient GOM conditions in the summer. This climate change exposure greatly increased phenotypic variation in net calcification rates compared to ambient conditions. We then used regression models to link the phenotypic variation with over 170 000 single nucleotide polymorphism loci (SNPs) generated by genotype by sequencing to identify genomic locations associated with calcification phenotype, and estimate heritability and architecture of the trait. We identified at least one of potentially 2–10 genomic regions responsible for 30% of the phenotypic variation in calcification rates that are potential targets of natural selection by climate change. Our simulations suggest a power of 13.7% with our study's average effective sample size of 118 individuals and rare alleles, but a power of >90% when effective sample size is 900.  相似文献   

15.
A defining feature of the nutritional ecology of plant sap‐feeding insects is that the dietary deficit of essential amino acids (EAAs) in plant sap is supplemented by EAA‐provisioning microbial symbionts in the insect. Here, we demonstrated substantial variation in the nutritional phenotype of 208 genotypes of the pea aphid Acyrthosiphon pisum collected from a natural population. Specifically, the genotypes varied in performance (larval growth rates) on four test diets lacking the EAAs arginine, histidine and methionine or aromatic EAAs (phenylalanine and tryptophan), relative to the diet containing all EAAs. These data indicate that EAA supply from the symbiotic bacteria Buchnera can meet total aphid nutritional demand for only a subset of the EAA/aphid genotype combinations. We then correlated single nucleotide polymorphisms (SNPs) identified in the aphid and Buchnera genomes by reduced genome sequencing against aphid performance for each EAA deletion diet. This yielded significant associations between performance on the histidine‐free diet and Buchnera SNPs, including metabolism genes predicted to influence histidine biosynthesis. Aphid genetic correlates of performance were obtained for all four deletion diets, with associations on the arginine‐free diet and aromatic‐free diets dominated by genes functioning in the regulation of metabolic and cellular processes. The specific aphid genes associated with performance on different EAA deletion diets are largely nonoverlapping, indicating some independence in the regulatory circuits determining aphid phenotype for the different EAAs. This study demonstrates how variation in the phenotype of associations collected from natural populations can be applied to elucidate the genetic basis of ecologically important traits in systems intractable to traditional forward/reverse genetic techniques.  相似文献   

16.
17.
18.
To improve the efficiency of breeding of Miscanthus for biomass yield, there is a need to develop genomics‐assisted selection for this long‐lived perennial crop by relating genotype to phenotype and breeding value across a broad range of environments. We present the first genome‐wide association (GWA) and genomic prediction study of Miscanthus that utilizes multilocation phenotypic data. A panel of 568 Miscanthus sinensis accessions was genotyped with 46,177 single nucleotide polymorphisms (SNPs) and evaluated at one subtropical and five temperate locations over 3 years for biomass yield and 14 yield‐component traits. GWA and genomic prediction were performed separately for different years of data in order to assess reproducibility. The analyses were also performed for individual field trial locations, as well as combined phenotypic data across groups of locations. GWA analyses identified 27 significant SNPs for yield, and a total of 504 associations across 298 unique SNPs across all traits, sites, and years. For yield, the greatest number of significant SNPs was identified by combining phenotypic data across all six locations. For some of the other yield‐component traits, greater numbers of significant SNPs were obtained from single site data, although the number of significant SNPs varied greatly from site to site. Candidate genes were identified. Accounting for population structure, genomic prediction accuracies for biomass yield ranged from 0.31 to 0.35 across five northern sites and from 0.13 to 0.18 for the subtropical location, depending on the estimation method. Genomic prediction accuracies of all traits were similar for single‐location and multilocation data, suggesting that genomic selection will be useful for breeding broadly adapted M. sinensis as well as M. sinensis optimized for specific climates. All of our data, including DNA sequences flanking each SNP, are publicly available. By facilitating genomic selection in M. sinensis and Miscanthus × giganteus, our results will accelerate the breeding of these species for biomass in diverse environments.  相似文献   

19.
Polysaccharides (PF) from marine macroalgae, Caulerpa scalpelliformis were extracted and tested for its potential immunostimulatory and disease resistance properties in fish. Five groups of Nile tilapia (n = 6), Oreochromis niloticus (Linnaeus, 1758) were intraperitoneally administered with the different doses of PF (2, 20 or 200 mg/kg body weight) or with yeast‐derived commercial immunostimulant, Macrogard? (20 mg/kg body weight), to compare the effectiveness. An untreated control group was also maintained. A total of fifteen fibre reinforced plastic tanks (150 L, ambient temperature and light conditions) were used, with triplicate tanks for each group. Only four fish per tank (totally 12 fish from a group) were taken at random and assayed. PF enhanced all the tested non‐specific serum immune responses namely lysozyme, myeloperoxidase, antiprotease, and bactericidal activities. There was an upregulation of the genes encoding IL‐1β, lysozyme and TNF‐α in the spleen of PF injected fish as compared to the control group. In order to study the overall functional immunity, disease resistance test was conducted. Another five groups of fish (n = 10) were treated by intraperitoneal injection with different doses of PF or Macrogard? or untreated as mentioned earlier in triplicates (30 fish per group in three tanks, totally 150 fish in 15 tanks). Seven days post treatment, fish were challenged by intraperitoneal administration of live virulent Aeromonas hydrophila. PF treated fish were protected with significant reduction in the mortality and the consequent increased relative percent survival (RPS) of 92 in the least (2 mg/kg) and middle dose (20 mg/kg) groups. The disease resistance experiment was repeated again but this time, fish were challenged 21 days post treatment that resulted in RPS of 50 for the middle dose. The results clearly show that the intraperitoneal administration of the polysaccharide fraction had a stimulating effect on the non‐specific immune responses, immune gene expression and disease resistance.  相似文献   

20.
Years of selection for desirable fruit quality traits in dessert watermelon (Citrullus lanatus) has resulted in a narrow genetic base in modern cultivars. Development of novel genomic and genetic resources offers great potential to expand genetic diversity and improve important traits in watermelon. Here, we report a high‐quality genome sequence of watermelon cultivar ‘Charleston Gray’, a principal American dessert watermelon, to complement the existing reference genome from ‘97103’, an East Asian cultivar. Comparative analyses between genomes of ‘Charleston Gray’ and ‘97103’ revealed genomic variants that may underlie phenotypic differences between the two cultivars. We then genotyped 1365 watermelon plant introduction (PI) lines maintained at the U.S. National Plant Germplasm System using genotyping‐by‐sequencing (GBS). These PI lines were collected throughout the world and belong to three Citrullus species, C. lanatus, C. mucosospermus and C. amarus. Approximately 25 000 high‐quality single nucleotide polymorphisms (SNPs) were derived from the GBS data using the ‘Charleston Gray’ genome as the reference. Population genomic analyses using these SNPs discovered a close relationship between C. lanatus and Cmucosospermus and identified four major groups in these two species correlated to their geographic locations. Citrullus amarus was found to have a distinct genetic makeup compared to C. lanatus and Cmucosospermus. The SNPs also enabled identification of genomic regions associated with important fruit quality and disease resistance traits through genome‐wide association studies. The high‐quality ‘Charleston Gray’ genome and the genotyping data of this large collection of watermelon accessions provide valuable resources for facilitating watermelon research, breeding and improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号