首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The transglycosylation step of cell wall synthesis is a prime antibiotic target because it is essential and specific to bacteria. Two antibiotics, ramoplanin and moenomycin, target this step by binding to the substrate lipid II and the transglycosylase enzyme, respectively. Here, we compare the ramoplanin and moenomycin stimulons in the Gram-positive model organism Bacillus subtilis. Ramoplanin strongly induces the LiaRS two-component regulatory system, while moenomycin almost exclusively induces genes that are part of the regulon of the extracytoplasmic function (ECF) σ factor σ(M). Ramoplanin additionally induces the ytrABCDEF and ywoBCD operons, which are not part of a previously characterized antibiotic-responsive regulon. Cluster analysis reveals that these two operons are selectively induced by a subset of cell wall antibiotics that inhibit lipid II function or recycling. Repression of both operons requires YtrA, which recognizes an inverted repeat in front of its own operon and in front of ywoB. These results suggest that YtrA is an additional regulator of cell envelope stress responses.  相似文献   

3.
4.
细菌GntR家族转录调控因子的研究进展   总被引:1,自引:0,他引:1  
GntR家族转录调控因子是细菌中分布最为广泛的一类螺旋-转角-螺旋(helix-turn-helix,HTH)转录调控因子,此家族转录调控因子包含两个功能域,分别是N端的DNA结合结构域和C端的效应物结合结构域/寡聚化作用结构域.DNA结合结构域的氨基酸序列是非常保守的,但效应物结合结构域/寡聚化作用结构域的氨基酸序列...  相似文献   

5.
1. Glucosamine 6-phosphate deaminase [2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating), EC 5.3.1.10] of Bacillus subtilis has been partially purified. Its Km is 3·0mm. 2. Extracts of B. subtilis contain N-acetylglucosamine 6-phosphate deacetylase (Km 1·4mm), glucosamine 1-phosphate acetylase and amino sugar kinases (EC 2.7.1.8 and 2.7.1.9). 3. Glucosamine 6-phosphate synthetase (l-glutamine–d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) is repressed by growth of B. subtilis in the presence of glucosamine, N-acetylglucosamine, N-propionylglucosamine or N-formylglucosamine. Glucosamine 6-phosphate deaminase and N-acetylglucosamine 6-phosphate deacetylase are induced by N-acetylglucosamine. Amino sugar kinases are induced by glucose, glucosamine and N-acetylglucosamine. The synthesis of glucosamine 1-phosphate acetylase is unaffected by amino sugars. 4. Glucose in the growth medium prevents the induction of glucosamine 6-phosphate deaminase and of N-acetylglucosamine 6-phosphate deacetylase caused by N-acetylglucosamine; glucose also alleviates the repression of glucosamine 6-phosphate synthetase caused by amino sugars. 5. Glucosamine 6-phosphate deaminase increases in bacteria incubated beyond the exponential phase of growth. This increase is prevented by glucose.  相似文献   

6.
Bacillus subtilis can utilize maltose and maltodextrins that are derived from polysaccharides, like starch or glycogen. In this work, we show that maltose is taken up by a member of the phosphoenolpyruvate-dependent phosphotransferase system and maltodextrins are taken up by a maltodextrin-specific ABC transporter. Uptake of maltose by the phosphoenolpyruvate-dependent phosphotransferase system is mediated by maltose-specific enzyme IICB (MalP; synonym, GlvC), with an apparent K(m) of 5 microM and a V(max) of 91 nmol . min(-1) . (10(10) CFU)(-1). The maltodextrin-specific ABC transporter is composed of the maltodextrin binding protein MdxE (formerly YvdG), with affinities in the low micromolar range for maltodextrins, and the membrane-spanning components MdxF and MdxG (formerly YvdH and YvdI, respectively), as well as the energizing ATPase MsmX. Maltotriose transport occurs with an apparent K(m) of 1.4 microM and a V(max) of 4.7 nmol . min(-1) . (10(10) CFU)(-1).  相似文献   

7.
8.
9.
10.
11.
12.
5-bromouracil utilization by Bacillus subtilis.   总被引:3,自引:1,他引:2       下载免费PDF全文
  相似文献   

13.
Regulation of sugar utilization by Aspergillus nidulans   总被引:7,自引:0,他引:7  
  相似文献   

14.
15.
16.
There are several kinds of regulation that enable microbes to cope with rapidly changing supplies of nutrients. This is exemplified by sugar metabolism in Saccharomyces cerevisiae. Some readily reversible controls affect the activity of enzymes, either by allosteric activation and deactivation, which often occur within seconds, or by covalent modification, within minutes. Other controls regulate the amount of enzyme present in the cells, either by irreversible proteolytic inactivation of the enzyme, or by influencing enzymic synthesis. The nomenclature of these processes is often confused.  相似文献   

17.
18.
19.
Genes controlling xylan utilization by Bacillus subtilis.   总被引:6,自引:2,他引:4  
Eight mutants of Bacillus subtilis deficient in xylan utilization were isolated and characterized genetically and biochemically. Each mutant was obtained independently after nitrosoguanidine mutagenesis. All of the analyzed mutations were shown to be linked. Reciprocal transformation crosses revealed the existence of two genes controlling xylan utilization which have been designated xynA and xynB. Available data have indicated that these two genes code for two xylan-degrading enzymes existing in the wild-type strains, an extracellular beta-xylanase (xynA) and a cell-associated beta-xylosidase (xynB).  相似文献   

20.
The synthesis of polyglutamic acid (PGA) was repressed by exogenous glutamate in strains of Bacillus licheniformis but not in strains of Bacillus subtilis, indicating a clear difference in the regulation of synthesis of capsular slime in these two species. Although extracellular γ-glutamyltranspeptidase (GGT) activity was always present in PGA-producing cultures of B. licheniformis under various growth conditions, there was no correlation between the quantity of PGA and enzyme activity. Moreover, the synthesis of PGA in the absence of detectable GGT activity in B. subtilis S317 indicated that this enzyme was not involved in PGA biosynthesis in this bacterium. Glutamate repression of PGA biosynthesis may offer a simple means of preventing unwanted slime production in industrial fermentations using B. licheniformis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号