首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, in vitro and in vivo experiments were carried out with the high‐affinity multifunctional D2/D3 agonist D‐512 to explore its potential neuroprotective effects in models of Parkinson's disease and the potential mechanism(s) underlying such properties. Pre‐treatment with D‐512 in vitro was found to rescue rat adrenal Pheochromocytoma PC12 cells from toxicity induced by 6‐hydroxydopamine administration in a dose‐dependent manner. Neuroprotection was found to coincide with reductions in intracellular reactive oxygen species, lipid peroxidation, and DNA damage. In vivo, pre‐treatment with 0.5 mg/kg D‐512 was protective against neurodegenerative phenotypes associated with systemic administration of MPTP, including losses in striatal dopamine, reductions in numbers of DAergic neurons in the substantia nigra (SN), and locomotor dysfunction. These observations strongly suggest that the multifunctional drug D‐512 may constitute a novel viable therapy for Parkinson's disease.

  相似文献   


2.
Higher plasma urate level is reported to be associated with a reduced risk and slower progression of Parkinson's disease (PD). In this study, we explored the effects of urate on dopaminergic neurons in nigrostriatal pathway in the 6‐hydroxydopamine (6‐OHDA) unilaterally lesioned rats. Uric acid (UA), when given twice daily at 200 mg/kg intraperitoneally for 10 consecutive days, elevated urate (the anionic form of UA) in plasma and striatum by 55% and 36.8%, respectively, as compared with vehicle group. This regimen of UA was found to ameliorate the behavioral deficits, dopaminergic neuron loss as well as dopamine depletion in the nigrostriatal system. Moreover, UA administration was capable of increasing glutathione level and superoxide dismutase activity while decreasing malondialdehyde accumulation in striatum. In addition, the phosphorylation of both protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK3β) in the lesioned striata of 6‐OHDA‐lesioned rats was dramatically reduced as compared with sham‐operated rats. This reduction was attenuated in the Parkinsonian rats receiving UA treatment. Similarly, in vitro findings showed that UA alleviated the decrease in Akt activation and the increase in GSK3β activity caused by 6‐OHDA. Furthermore, neuroprotection by urate and its regulation on GSK3β phosphorylation at Ser9 was found to be abolished in the presence of PI3K inhibitor. Therefore, our findings demonstrated that urate was able to protect dopaminergic neurons in rat nigrostriatal pathway against the neurotoxicity of 6‐OHDA, and showed that its beneficial effects may be related to its regulation on Akt/GSK3β signaling.  相似文献   

3.
4.
5.
6.
7.
The relation of α‐synuclein (αS) aggregation to Parkinson's disease (PD) has long been recognized, but the mechanism of toxicity, the pathogenic species and its molecular properties are yet to be identified. To obtain insight into the function different aggregated αS species have in neurotoxicity in vivo, we generated αS variants by a structure‐based rational design. Biophysical analysis revealed that the αS mutants have a reduced fibrillization propensity, but form increased amounts of soluble oligomers. To assess their biological response in vivo, we studied the effects of the biophysically defined pre‐fibrillar αS mutants after expression in tissue culture cells, in mammalian neurons and in PD model organisms, such as Caenorhabditis elegans and Drosophila melanogaster. The results show a striking correlation between αS aggregates with impaired β‐structure, neuronal toxicity and behavioural defects, and they establish a tight link between the biophysical properties of multimeric αS species and their in vivo function.  相似文献   

8.
Malfunctioning of the protein α‐synuclein is critically involved in the demise of dopaminergic neurons relevant to Parkinson's disease. Nonetheless, the precise mechanisms explaining this pathogenic neuronal cell death remain elusive. Endonuclease G (EndoG) is a mitochondrially localized nuclease that triggers DNA degradation and cell death upon translocation from mitochondria to the nucleus. Here, we show that EndoG displays cytotoxic nuclear localization in dopaminergic neurons of human Parkinson‐diseased patients, while EndoG depletion largely reduces α‐synuclein‐induced cell death in human neuroblastoma cells. Xenogenic expression of human α‐synuclein in yeast cells triggers mitochondria‐nuclear translocation of EndoG and EndoG‐mediated DNA degradation through a mechanism that requires a functional kynurenine pathway and the permeability transition pore. In nematodes and flies, EndoG is essential for the α‐synuclein‐driven degeneration of dopaminergic neurons. Moreover, the locomotion and survival of α‐synuclein‐expressing flies is compromised, but reinstalled by parallel depletion of EndoG. In sum, we unravel a phylogenetically conserved pathway that involves EndoG as a critical downstream executor of α‐synuclein cytotoxicity.  相似文献   

9.
Previously, we demonstrated that systemically injected extracellular domain of neuregulin‐1β1 (Nrg1β1), a nerve growth and differentiation factor, passes the blood‐brain barrier and rescues dopaminergic neurons of substantia nigra in the 6‐hydroxydopamine‐mouse model of Parkinson's disease (PD). Here, we studied the effects of peripherally administered Nrg1β1 in another toxin‐based mouse model of PD. For this purpose, (i) nigrostriatal pathway injury was induced by treatment of adult wild‐type mice with 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) in acute and subchronic paradigms; and (ii) Nrg1β1 or saline (control) were administered 1 h before each MPTP injection. We found that Nrg1β1 significantly reduced the loss of nigral dopaminergic neurons in both intoxication paradigms (7 days post‐injection). However, Nrg1β1 did not reverse MPTP‐induced decrease in dopamine levels and dopaminergic fibers in the striatum. We also show that MPTP conversion to its toxic metabolite 1‐methyl‐4‐phenylpyridinium as well as levels of dopamine transporter, mediating intracellular uptake of 1‐methyl‐4‐phenylpyridinium, are unaffected by Nrg1β1. Finally, neuroprotective properties of Nrg1β1 on nigral dopaminergic neurons are specifically mediated by ErbB4 as revealed through the study of ErbB4 knockout mice. In conclusion, systemically administered Nrg1β1 protects midbrain dopaminergic neurons against this PD‐related toxic insult. Thus, Nrg1β1 may have a benefit in the treatment of PD patients.

  相似文献   


10.
11.
Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)‐induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase‐2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross‐clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2?/?) and wild‐type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin‐related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N‐acetylcysteine (NAC) or PKC‐δ shRNA treatment on glycogen synthase kinase‐3β (GSK‐3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2?/? mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC‐ε translocation was lower in ALDH2?/? mice than in WT mice, and PKC‐δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre‐treatment under I/R injury. In addition, PKC‐ε inhibition caused activation of caspase9, caspase3 and Drp1Ser616 in response to I/R stress. Importantly, expression of phosphorylated GSK‐3β (inactive form) was lower in ALDH2?/? mice than in WT mice, and both were increased by NAC pre‐treatment. I/R‐induced mitochondrial translocation of GSK‐3β was inhibited by PKC‐δ shRNA or NAC pre‐treatment. In addition, mitochondrial membrane potential (?Ψm) was reduced in ALDH2?/? mice after I/R, which was partly reversed by the GSK‐3β inhibitor (SB216763) or PKC‐δ shRNA. Collectively, our data provide the evidence that abnormal PKC‐ε/PKC‐δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK‐3β‐dependent mPTP opening, which results in mitochondrial injury‐triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2?/? mice following I/R stress.  相似文献   

12.
The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson''s disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α‐Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α‐Syn inhibited the autophagy initiation, as indicated by LC3‐II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia‐enriched population isolated from αSyn‐overexpressing mice induced by adeno‐associated virus (AAV2/9)‐encoded wildtype human αSyn injection into the substantia nigra (SN). Mechanistically, α‐Syn led to microglial autophagic impairment through activating toll‐like receptor 4 (Tlr4) and its downstream p38 and Akt‐mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α‐Syn‐induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α‐Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2 cre)‐mediated depletion of autophagyrelated gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in αSyn‐overexpressing mice. Taken together, the results suggest that extracellular α‐Syn, via Tlr4‐dependent p38 and Akt‐mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development.  相似文献   

13.
We evaluated the neuroprotective effects of β‐methylphenylalanine in an experimental model of rotenone‐induced Parkinson's disease (PD) in SH‐SY5Y cells and rats. Cells were pre‐treated with rotenone (2.5 µg/mL) for 24 hours followed by β‐methylphenylalanine (1, 10 and 100 mg/L) for 72 hours. Cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), mitochondrial fragmentation, apoptosis, and mRNA and protein levels of tyrosine hydroxylase were determined. In a rat model of PD, dopamine (DA) and 3,4‐dihydroxyphenylacetic acid (DOPAC) levels, bradykinesia and tyrosine hydroxylase expression were determined. In rotenone–pre‐treated cells, β‐methylphenylalanine significantly increased cell viability and MMP, whereas ROS levels, apoptosis and fragmented mitochondria were reduced. β‐Methylphenylalanine significantly increased the mRNA and protein levels of tyrosine hydroxylase in SH‐SY5Y cells. In the rotenone‐induced rat model of PD, oral administration of β‐methylphenylalanine recovered DA and DOPAC levels and bradykinesia. β‐Methylphenylalanine significantly increased the protein expression of tyrosine hydroxylase in the striatum and substantia nigra of rats. In addition, in silico molecular docking confirmed binding between tyrosine hydroxylase and β‐methylphenylalanine. Our experimental results show neuroprotective effects of β‐methylphenylalanine via the recovery of mitochondrial damage and protection against the depletion of tyrosine hydroxylase. We propose that β‐methylphenylalanine may be useful in the treatment of PD.  相似文献   

14.
15.
Neurotoxic effects of amyloid β peptides are mediated through deregulation of intracellular Ca2+ homeostasis and signaling, but relatively little is known about amyloid β modulation of Ca2+ homeostasis and its pathological influence on glia. Here, we found that amyloid β oligomers caused a cytoplasmic Ca2+ increase in cultured astrocytes, which was reduced by inhibitors of PLC and ER Ca2+ release. Furthermore, amyloid β peptides triggered increased expression of glial fibrillary acidic protein (GFAP), as well as oxidative and ER stress, as indicated by eIF2α phosphorylation and overexpression of chaperone GRP78. These effects were decreased by ryanodine and 2APB, inhibitors of ryanodine receptors and InsP3 receptors, respectively, in both primary cultured astrocytes and organotypic cultures of hippocampus and entorhinal cortex. Importantly, intracerebroventricular injection of amyloid β oligomers triggered overexpression of GFAP and GRP78 in astrocytes of the hippocampal dentate gyrus. These data were validated in a triple‐transgenic mouse model of Alzheimer's disease (AD). Overexpression of GFAP and GRP78 in the hippocampal astrocytes correlated with the amyloid β oligomer load in 12‐month‐old mice, suggesting that this parameter drives astrocytic ER stress and astrogliosis in vivo. Together, these results provide evidence that amyloid β oligomers disrupt ER Ca2+ homeostasis, which induces ER stress that leads to astrogliosis; this mechanism may be relevant to AD pathophysiology.  相似文献   

16.
17.
18.
D2/D3 dopamine receptors (D2R/D3R) agonists regulate Akt, but their effects display a complex time‐course. In addition, the respective roles of D2R and D3R are not defined and downstream targets remain poorly characterized, especially in vivo. These issues were addressed here for D3R. Systemic administration of quinelorane, a D2R/D3R agonist, transiently increased phosphorylation of Akt and GSK‐3β in rat nucleus accumbens and dorsal striatum with maximal effects 10 min after injection. Akt activation was associated with phosphorylation of several effectors of the mammalian target of rapamycin complex 1 (mTORC1): p70S6 kinase, ribosomal protein‐S6 (Ser240/244), and eukaryotic initiation factor‐4E binding protein‐1. The action of quinelorane was antagonized by a D2/D3R antagonist, raclopride, and the selective D3R antagonist S33084, inactive by themselves. Furthermore, no effect of quinerolane was seen in knock‐out mice lacking D3R. In drd1a‐EGFP transgenic mice, quinelorane activated Akt/GSK‐3β in both neurons expressing and lacking D1 receptor. Thus, the stimulation of D3R transiently activates the Akt/GSK‐3β pathway in the two populations of medium‐size spiny neurons of the nucleus accumbens and dorsal striatum. This effect may contribute to the influence of D3R ligands on reward, cognition, and processes disrupted in schizophrenia, drug abuse, and Parkinson's disease.  相似文献   

19.
The ATP‐dependent protein chaperone heat‐shock protein 70 (Hsp70) displays broad anti‐aggregation functions and has a critical function in preventing protein misfolding pathologies. According to in vitro and in vivo models of Parkinson's disease (PD), loss of Hsp70 activity is associated with neurodegeneration and the formation of amyloid deposits of α‐synuclein (αSyn), which constitute the intraneuronal inclusions in PD patients known as Lewy bodies. Here, we show that Hsp70 depletion can be a direct result of the presence of aggregation‐prone polypeptides. We show a nucleotide‐dependent interaction between Hsp70 and αSyn, which leads to the aggregation of Hsp70, in the presence of ADP along with αSyn. Such a co‐aggregation phenomenon can be prevented in vitro by the co‐chaperone Hip (ST13), and the hypothesis that it might do so also in vivo is supported by studies of a Caenorhabditis elegans model of αSyn aggregation. Our findings indicate that a decreased expression of Hip could facilitate depletion of Hsp70 by amyloidogenic polypeptides, impairing chaperone proteostasis and stimulating neurodegeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号