共查询到20条相似文献,搜索用时 13 毫秒
1.
The Spx protein of Bacillus subtilis is a global regulator of the oxidative stress response. Spx concentration is controlled at the level of proteolysis by the ATP-dependent protease ClpXP and a substrate-binding protein, YjbH, which interacts with Spx. A yeast two-hybrid screen was carried out using yjbH as bait to uncover additional substrates or regulators of YjbH activity. Of the several genes identified in the screen, one encoded a small protein, YirB (YuzO), which elevated Spx concentration and activity in vivo when overproduced from an isopropyl-β-D-thiogalactopyranoside (IPTG)-inducible yirB construct. Pulldown experiments using extracts of B. subtilis cells producing a His-tagged YirB showed that native YjbH interacts with YirB in B. subtilis. Pulldown experiments using affinity-tagged Spx showed that YirB inhibited YjbH interaction with Spx. In vitro, YjbH-mediated proteolysis of Spx by ClpXP was inhibited by YirB. The activity of YirB is similar to that of the antiadaptor proteins that were previously shown to reduce proteolysis of a specific ClpXP substrate by interacting with a substrate-binding protein. 相似文献
2.
Bacillus subtilis SalA is a phosphorylation‐dependent transcription regulator that represses scoC and activates the production of the exoprotease AprE 下载免费PDF全文
Abderahmane Derouiche Lei Shi Vladimir Bidnenko Magali Ventroux Nathalie Pigonneau Mirita Franz‐Wachtel Aida Kalantari Sylvie Nessler Marie‐Françoise Noirot‐Gros Ivan Mijakovic 《Molecular microbiology》2015,97(6):1195-1208
Bacillus subtilis Mrp family protein SalA has been shown to indirectly promote the production of the exoprotease AprE by inhibiting the expression of scoC, which codes for a repressor of aprE. The exact mechanism by which SalA influences scoC expression has not been clarified previously. We demonstrate that SalA possesses a DNA‐binding domain (residues 1–60), which binds to the promoter region of scoC. The binding of SalA to its target DNA depends on the presence of ATP and is stimulated by phosphorylation of SalA at tyrosine 327. The B. subtilis protein‐tyrosine kinase PtkA interacts specifically with the C‐terminal domain of SalA in vivo and in vitro and is responsible for activating its DNA binding via phosphorylation of tyrosine 327. In vivo, a mutant mimicking phosphorylation of SalA (SalA Y327E) exhibited a strong repression of scoC and consequently overproduction of AprE. By contrast, the non‐phosphorylatable SalA Y327F and the ΔptkA exhibited the opposite effect, stronger expression of scoC and lower production of the exoprotease. Interestingly, both SalA and PtkA contain the same ATP‐binding Walker domain and have thus presumably arisen from the common ancestral protein. Their regulatory interplay seems to be conserved in other bacteria. 相似文献
3.
4.
Role of the aminotransferase domain in Bacillus subtilis GabR,a pyridoxal 5′‐phosphate‐dependent transcriptional regulator 下载免费PDF全文
Keita Okuda Shiro Kato Tomokazu Ito Shunsuke Shiraki Yumiko Kawase Masaru Goto Susumu Kawashima Hisashi Hemmi Harumi Fukada Tohru Yoshimura 《Molecular microbiology》2015,95(2):245-257
5.
Jeanette Hahn Andrew W. Tanner Valerie J. Carabetta Ileana M. Cristea David Dubnau 《Molecular microbiology》2015,97(3):454-471
The bistably expressed K‐state of Bacillus subtilis is characterized by two distinct features; transformability and arrested growth when K‐state cells are exposed to fresh medium. The arrest is manifested by a failure to assemble replisomes and by decreased rates of cell growth and rRNA synthesis. These phenotypes are all partially explained by the presence of the AAA+ protein ComGA, which is also required for the binding of transforming DNA to the cell surface and for the assembly of the transformation pilus that mediates DNA transport. We have discovered that ComGA interacts with RelA and that the ComGA‐dependent inhibition of rRNA synthesis is largely bypassed in strains that cannot synthesize the alarmone (p)ppGpp. We propose that the interaction of ComGA with RelA prevents the hydrolysis of (p)ppGpp in K‐state cells, which are thus trapped in a non‐growing state until ComGA is degraded. We show that some K‐state cells exhibit tolerance to antibiotics, a form of type 1 persistence, and we propose that the bistable expression of both transformability and the growth arrest are bet‐hedging adaptations that improve fitness in the face of varying environments, such as those presumably encountered by B. subtilis in the soil. 相似文献
6.
The response regulator DegU and its cognate kinase DegS constitute a two‐component system in Bacillus subtilis that regulates many cellular processes, including exoprotease production and competence development. Using DNA footprint assay, gel shift assay and mutational analyses of P3degU‐lacZ fusions, we showed that phosphorylated DegU (DegU‐P) binds to two direct repeats (DR1 and DR2) of the consensus DegU‐binding sequence in the P3degU promoter. The alteration of chromosomal DR2 severely decreased degU expression, demonstrating its importance in positive autoregulation of degU. Observation of DegU protein levels suggested that DegU is degraded. Western blot analysis of DegU in disruption mutants of genes encoding various ATP‐dependent proteases strongly suggested that ClpCP degrades DegU. Moreover, when de novo protein synthesis was blocked, DegU was rapidly degraded in the wild‐type but not in the clpC and clpP strains, and DegU with a mutated phosphorylation site was much stable. These results suggested preferential degradation of DegU‐P by ClpCP, but not of unphosphorylated DegU. We confirmed that DegU‐P was degraded preferentially using an in vitro ClpCP degradation system. Furthermore, a mutational analysis showed that the N‐terminal region of DegU is important for proteolysis. 相似文献
7.
8.
Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis 下载免费PDF全文
The mechanism underlying the delivery of ubiquitylated substrates to the proteasome is poorly understood. Rad23 is a putative adaptor molecule for this process because it interacts with ubiquitin chains through its ubiquitin-associated motifs (UBA) and with the proteasome through a ubiquitin-like element (UBL). Here, we demonstrate that the UBL motif of Rad23 also binds Ufd2, an E4 enzyme essential for ubiquitin chain assembly onto its substrates. Mutations in the UBL of Rad23 alter its interactions with Ufd2 and the proteasome, and impair its function in the UFD proteolytic pathway. Furthermore, Ufd2 and the proteasome subunit Rpn1 compete for the binding of Rad23, suggesting that Rad23 forms separate complexes with them. Importantly, we also find that the ability of other UBL/UBA proteins to associate with Ufd2 correlates with their differential involvement in the UFD pathway, suggesting that UBL-mediated interactions may contribute to the substrate specificity of these adaptors. We propose that the UBL motif, a protein-protein interaction module, may be used to facilitate coupling between substrate ubiquitylation and delivery, and to ensure the orderly handoff of the substrate from the ubiquitylation machinery to the proteasome. 相似文献
9.
The response regulator DosR is essential for promoting long-term survival of Mycobacterium tuberculosis under low oxygen conditions in a dormant state and may be responsible for latent tuberculosis in one-third of the world's population. Here, we report crystal structures of full-length unphosphorylated DosR at 2.2 Å resolution and its C-terminal DNA-binding domain at 1.7 Å resolution. The full-length DosR structure reveals several features never seen before in other response regulators. The N-terminal domain of the full-length DosR structure has an unexpected (βα)4 topology instead of the canonical (βα)5 fold observed in other response regulators. The linker region adopts a unique conformation that contains two helices forming a four-helix bundle with two helices from another subunit, resulting in dimer formation. The C-terminal domain in the full-length DosR structure displays a novel location of helix α10, which allows Gln199 to interact with the catalytic Asp54 residue of the N-terminal domain. In contrast, the structure of the DosR C-terminal domain alone displays a remarkable unstructured conformation for helix α10 residues, different from the well-defined helical conformations in all other known structures, indicating considerable flexibility within the C-terminal domain. Our structures suggest a mode of DosR activation by phosphorylation via a helix rearrangement mechanism. 相似文献
10.
RpoS proteolysis is regulated by a mechanism that does not require the SprE (RssB) response regulator phosphorylation site 下载免费PDF全文
In Escherichia coli the response regulator SprE (RssB) facilitates degradation of the sigma factor RpoS by delivering it to the ClpXP protease. This process is regulated: RpoS is degraded in logarithmic phase but becomes stable upon carbon starvation, resulting in its accumulation. Because SprE contains a CheY domain with a conserved phosphorylation site (D58), the prevailing model posits that this control is mediated by phosphorylation. To test this model, we mutated the conserved response regulator phosphorylation site (D58A) of the chromosomal allele of sprE and monitored RpoS levels in response to carbon starvation. Though phosphorylation contributed to the SprE basal activity, we found that RpoS proteolysis was still regulated upon carbon starvation. Furthermore, our results indicate that phosphorylation of wild-type SprE occurs by a mechanism that is independent of acetyl phosphate. 相似文献
11.
12.
13.
Homology models of the HIV‐1 attachment inhibitor BMS‐626529 bound to gp120 suggest a unique mechanism of action 下载免费PDF全文
David R. Langley Prasanna Sivaprakasam Nannan Zhou Ira Dicker Brian McAuliffe Tao Wang John F. Kadow Nicholas A. Meanwell Mark Krystal 《Proteins》2015,83(2):331-350
HIV‐1 gp120 undergoes multiple conformational changes both before and after binding to the host CD4 receptor. BMS‐626529 is an attachment inhibitor (AI) in clinical development (administered as prodrug BMS‐663068) that binds to HIV‐1 gp120. To investigate the mechanism of action of this new class of antiretroviral compounds, we constructed homology models of unliganded HIV‐1 gp120 (UNLIG), a pre‐CD4 binding‐intermediate conformation (pCD4), a CD4 bound‐intermediate conformation (bCD4), and a CD4/co‐receptor‐bound gp120 (LIG) from a series of partial structures. We also describe a simple pathway illustrating the transition between these four states. Guided by the positions of BMS‐626529 resistance substitutions and structure–activity relationship data for the AI series, putative binding sites for BMS‐626529 were identified, supported by biochemical and biophysical data. BMS‐626529 was docked into the UNLIG model and molecular dynamics simulations were used to demonstrate the thermodynamic stability of the different gp120 UNLIG/BMS‐626529 models. We propose that BMS‐626529 binds to the UNLIG conformation of gp120 within the structurally conserved outer domain, under the antiparallel β20–β21 sheet, and adjacent to the CD4 binding loop. Through this binding mode, BMS‐626529 can inhibit both CD4‐induced and CD4‐independent formation of the “open state” four‐stranded gp120 bridging sheet, and the subsequent formation and exposure of the chemokine co‐receptor binding site. This unique mechanism of action prevents the initial interaction of HIV‐1 with the host CD4+ T cell, and subsequent HIV‐1 binding and entry. Our findings clarify the novel mechanism of BMS‐626529, supporting its ongoing clinical development. Proteins 2015; 83:331–350. © 2014 Wiley Periodicals, Inc. 相似文献
14.
15.
16.
Cryo‐electron tomography analyses of terminal organelle mutants suggest the motility mechanism of Mycoplasma genitalium 下载免费PDF全文
Margot P. Scheffer Maria Lluch‐Senar Ana M. Mariscal Enrique Querol Franziska Matthaeus Jaume Piñol Achilleas S. Frangakis 《Molecular microbiology》2018,108(3):319-329
The terminal organelle of Mycoplasma genitalium is responsible for bacterial adhesion, motility and pathogenicity. Localized at the cell tip, it comprises an electron‐dense core that is anchored to the cell membrane at its distal end and to the cytoplasm at its proximal end. The surface of the terminal organelle is also covered with adhesion proteins. We performed cellular cryoelectron tomography on deletion mutants of eleven proteins that are implicated in building the terminal organelle, to systematically analyze the ultrastructural effects. These data were correlated with microcinematographies, from which the motility patterns can be quantitatively assessed. We visualized diverse phenotypes, ranging from mild to severe cell adhesion, motility and segregation defects. Based on our observations, we propose a double‐spring ratchet model for the motility mechanism that explains our current and previous observations. Our model, which expands and integrates the previously suggested inchworm model, allocates specific functions to each of the essential components of this unique bacterial motility system. 相似文献
17.
Gene transfer agents (GTAs) are genetic exchange elements that resemble small DNA bacteriophages that transfer random pieces of the producing cell's genome to recipient cells. The best‐studied GTA is that of Rhodobacter capsulatus, termed RcGTA. We discovered that the putative response regulator CtrA, which is essential for RcGTA production, is required for RcGTA‐mediated gene acquisition, and confirmed that a RecA homologue is required. It was also discovered that a DprA (DNA‐protecting protein A) homologue is essential for RcGTA‐mediated gene acquisition, and that dprA expression is induced by gtaI‐dependent quorum‐sensing and non‐phosphorylated CtrA. Modelling of the R. capsulatus DprA structure indicated the presence of a C‐terminal region that resembles a dsDNA‐binding protein domain. Purified His‐tagged R. capsulatus DprA protein bound to both single‐stranded (ss)DNA and double‐stranded (ds)DNA, but with a greater affinity for ssDNA. Additionally, DprA protected dsDNA from endonuclease digestion, and increased the rate of nucleation of Escherichia coli RecA onto ssDNA. Single‐cell expression analyses revealed that dprA is expressed in the majority of cells throughout a population. Overall, the results suggest that incorporation of RcGTA DNA into the recipient cell genome proceeds through a homologous recombination pathway resembling DNA recombination in natural transformation. 相似文献
18.
Structural,mutagenic and in silico studies of xyloglucan fucosylation in Arabidopsis thaliana suggest a water‐mediated mechanism 下载免费PDF全文
Markus Alahuhta Maria J. Peña Vladimir V. Lunin Yannick J. Bomble Shuo Wang Jeong‐Yeh Yang Sami T. Tuomivaara Michael E. Himmel Kelley W. Moremen William S. York Michael F. Crowley 《The Plant journal : for cell and molecular biology》2017,91(6):931-949
The mechanistic underpinnings of the complex process of plant polysaccharide biosynthesis are poorly understood, largely because of the resistance of glycosyltransferase (GT) enzymes to structural characterization. In Arabidopsis thaliana, a glycosyl transferase family 37 (GT37) fucosyltransferase 1 (AtFUT1) catalyzes the regiospecific transfer of terminal 1,2‐fucosyl residues to xyloglucan side chains – a key step in the biosynthesis of fucosylated sidechains of galactoxyloglucan. We unravel the mechanistic basis for fucosylation by AtFUT1 with a multipronged approach involving protein expression, X‐ray crystallography, mutagenesis experiments and molecular simulations. Mammalian cell culture expressions enable the sufficient production of the enzyme for X‐ray crystallography, which reveals the structural architecture of AtFUT1 in complex with bound donor and acceptor substrate analogs. The lack of an appropriately positioned active site residue as a catalytic base leads us to propose an atypical water‐mediated fucosylation mechanism facilitated by an H‐bonded network, which is corroborated by mutagenesis experiments as well as detailed atomistic simulations. 相似文献
19.
Molecular modeling and computational analyses suggests that the Sinorhizobium meliloti periplasmic regulator protein ExoR adopts a superhelical fold and is controlled by a unique mechanism of proteolysis 下载免费PDF全文
Eliza M. Wiech Hai‐Ping Cheng Shaneen M. Singh 《Protein science : a publication of the Protein Society》2015,24(3):319-327
The Sinorhizobium meliloti periplasmic ExoR protein and the ExoS/ChvI two‐component system form a regulatory mechanism that directly controls the transformation of free‐living to host‐invading cells. In the absence of crystal structures, understanding the molecular mechanism of interaction between ExoR and the ExoS sensor, which is believed to drive the key regulatory step in the invasion process, remains a major challenge. In this study, we present a theoretical structural model of the active form of ExoR protein, ExoRm, generated using computational methods. Our model suggests that ExoR possesses a super‐helical fold comprising 12 α‐helices forming six Sel1‐like repeats, including two that were unidentified in previous studies. This fold is highly conducive to mediating protein–protein interactions and this is corroborated by the identification of putative protein binding sites on the surface of the ExoRm protein. Our studies reveal two novel insights: (a) an extended conformation of the third Sel1‐like repeat that might be important for ExoR regulatory function and (b) a buried proteolytic site that implies a unique proteolytic mechanism. This study provides new and interesting insights into the structure of S. meliloti ExoR, lays the groundwork for elaborating the molecular mechanism of ExoRm cleavage, ExoRm–ExoS interactions, and studies of ExoR homologs in other bacterial host interactions. 相似文献
20.
Epigallocatechin‐3‐gallate functions as a physiological regulator by modulating the jasmonic acid pathway 下载免费PDF全文
Gaojie Hong Jie Wang Danielle Hochstetter Yuanyuan Gao Ping Xu Yuefei Wang 《Physiologia plantarum》2015,153(3):432-439
Flavonoids, a class of plant polyphenols derived from plant secondary metabolism, play important roles in plant development and have beneficial effects on human health. Epigallocatechin‐3‐gallate (EGCG) is the most abundant polyphenol, and its molecular and biochemical mechanism have been followed with interest. The shared signaling heritage or convergence of organisms has allowed us to extend this research into the model plant, Arabidopsis thaliana. Here, we showed that EGCG could promote jasmonic acid (JA) signaling in A. thaliana. EGCG not only inhibited seed germination but also elevated the resistance to necrotrophic Botrytis cinerea, partly by altering the relative strength of JA signaling. Accordingly, JA marker gene induction, seed germination inhibition and the increased resistance to B. cinerea were attenuated in the JA‐insensitive coi1‐2 mutant. The coi1‐2 mutant was partially insensitive to the treatment of EGCG, further implicating the function of EGCG in JA signaling and/or perception. Our results indicate that EGCG, a member of the flavonoid class of polyphenols, affects signal processing in seed development and disease susceptibility via modulation of JA signaling. 相似文献