In vivo 1H magnetic resonance spectroscopy was used to measure the cerebral ethanol concentration in the rabbit after both intraarterial and intragastric administration. There was good agreement between cerebral and blood ethanol concentrations at all times after administration by either route. Cerebral ethanol levels, measured using in vivo 1H spectroscopy, agreed well with those measured in perchloric acid extracts of brain, analyzed by both high-resolution 1H spectroscopy and gas chromatography. Ethanol may be useful as an indicator to measure cerebral blood flow by 1H spectroscopy and chemical shift-selective magnetic resonance imaging. 相似文献
We investigated whether localized 1H nuclear magnetic resonance spectroscopy (NMRS) using stimulated echoes (STEAM) with a long mixing time (tm) allowed the suppression of the fat signal and detection of lactate in skeletal muscle. The 1H NMRS sequence was first validated in three isolated and perfused rabbit biceps brachii muscles. Spectra were obtained on a wide-bore spectrometer using a dual-tuned probe (1H and 31P). Death was simulated by ceasing the muscle perfusion, which allowed post-mortem changes to be followed. During and after the simulated death, changes in levels of pH and in content of energy-rich compounds
were observed with 31P NMRS. Our results showed an inverse linear relationship between pH and lactate in each of the three rabbits (r = 0.93, P < 0.001; r = 0.92, P < 0.01; r = 0.89, P < 0.01) and a decrease in phosphocreatine and concomitant increase in lactate. We then investigated whether this sequence
allowed repeated detection of lactate in human soleus muscle during the recovery between periods of intense exercise (force-velocity
test, F-v test). Seven subjects mean age 25.1 (SEM 0.8) years participated in this study. Soleus muscle lactate was detected at rest
and for 3 min 30 s of the 5-min recovery between periods using a 2.35-T 40-cm bore magnet spectrometer. Arm venous plasma
lactate concentration was measured at rest, during the F-v test when the subject stopped pedalling (S1), and at the end of each 5-min recovery between periods (S2). Results showed that the venous plasma lactate concentration at S1 and S2 increased significantly from the beginning of the F-v test to peak anaerobic power (Wan,peak) (P < 0.001). The spectra showed that muscle lactate resonance intensity rose markedly when Wan,peak was achieved. The muscle lactate resonance intensity plotted as a percentage of the resting value increased significantly
at Wan,peak compared with submaximal braking forces (P < 0.05). We concluded from these results that localized 1H NMRS using STEAM with a long tm allows suppression of the fat signal and repeated detection of lactate on isolated perfused skeletal muscle in animals and
between periods of intense exercise in humans.
Accepted: 19 January 1998 相似文献
The analysis of melarsoprol in whole blood, plasma, urine and cerebrospinal fluid is described. Extraction was made with a mixture of chloroform and acetonitrile followed by back-extraction into phosphoric acid. A reversed-phase liquid chromatography system with ultraviolet detection was used. The relative standard deviation was 1% at concentrations around 10 μmol/l and 3–6% at the lower limit of determination (9 nmol/l in plasma, 93 nmol/l in whole blood, 45 nmol/l in urine and 10 nmol/l in cerebrospinal fluid). Melarsoprol is not a stable compound and samples to be stored for longer periods of time should be kept at −70°C. Plasma samples can be stored at −20°C for upt to 2 months. Chromatography showed that melarsoprol contains two components. Using nuclear magnetic resonance spectroscopy the two components were shown to be diastereomers which slowly equilibrate by inversion of the configuration at the As atom. 相似文献
The FLASH and STEAM pulse sequences were used to perform the microimaging and localized spectroscopy of brain of living and dead mice, respectively. The phase-shift presaturation approach was used to sup-press water NMR signal. The experimental results show that the differences in localized spectra and MR images of brain between live and dead mice can be observed by means of magnetic resonance microscopy. 相似文献
Total non-acid glycosphingolipids were isolated from the plasma of a healthy red blood cell group O Le(a-b-) salivary ABH secretor individual. Glycolipids were fractionated by HPLC and combined into eight fractions based on chromatographic and immunoreactive properties. These glycolipid fractions were analysed by thin-layer chromatography and tested for Lewis activity with antibodies reactive to the type 1 precursor (Lec), H type 1 (Led), Lea and Leb epitopes. Fractions were structurally characterized by mass spectrometry (EI-MS and LSIMS) and proton NMR spectroscopy. Expected blood group glycolipids, such as H type 1, (Fuc1-2Gal1-3GlcNAc1-3Gal1-4Glc1-1Cer) were immunochemically and structurally identified. Inconsistent with the red cell phenotype and for the first time, small quantities of Leb blood group glycolipids (Fuc1-2Gal1-3(Fuc1-4)GlcNAc1-3Gal1-4Glc1-1Cer) were immunochemically and structurally identified in the plasma of a Lewis-negative individual. These findings confirm recent immunological evidence suggesting the production of small amounts of Lewis antigens by Lewis negative individuals.Abbreviations: HPLC, high performance liquid chromatography; TLC, (high performance) thin layer chromatography; EI-MS, electron impact ionisation mass spectrometry; LSIMS, liquid secondary ion mass spectrometry; NMR, nuclear magnetic resonance spectroscopy. The sugar types are abbreviated to Hex for hexose, HexNAc forN-acetylhexosamine and dHex for deoxyhexose (fucose). The ceramide types are abbreviated to d for dihydroxy and t for trihydroxy base, n for non-hydroxy and h for hydroxy fatty acids; LCB, long chain base. 相似文献
In the era of genomics and proteomics, metabolomics offers a unique way to probe the underlying biochemistry of malignant transformations. In the context of oncological metabolomics, the study of the global variation of metabolites involved in the development and progression of cancers, few existing techniques offer as much potential to discover biomarkers as nuclear magnetic resonance techniques. The most fundamental magnetic resonance methodologies with regard to human prostate cancer are magnetic resonance spectroscopy and magnetic resonance spectroscopic imaging. Recent in vivo explorations have examined crucial metabolites that may indicate cancerous lesions and have the potential to direct treatment; while ex vivo studies of prostatic fluids and tissues have defined novel diagnostic parameters and indicated that magnetic resonance methodologies will be paramount in future prostate cancer management. 相似文献
1H Nuclear Magnetic Resonance spectroscopy (1H NMR) is increasingly used to measure metabolite concentrations in sets of biological samples for top‐down systems biology and molecular epidemiology. For such purposes, knowledge of the sources of human variation in metabolite concentrations is valuable, but currently sparse. We conducted and analysed a study to create such a resource. In our unique design, identical and non‐identical twin pairs donated plasma and urine samples longitudinally. We acquired 1H NMR spectra on the samples, and statistically decomposed variation in metabolite concentration into familial (genetic and common‐environmental), individual‐environmental, and longitudinally unstable components. We estimate that stable variation, comprising familial and individual‐environmental factors, accounts on average for 60% (plasma) and 47% (urine) of biological variation in 1H NMR‐detectable metabolite concentrations. Clinically predictive metabolic variation is likely nested within this stable component, so our results have implications for the effective design of biomarker‐discovery studies. We provide a power‐calculation method which reveals that sample sizes of a few thousand should offer sufficient statistical precision to detect 1H NMR‐based biomarkers quantifying predisposition to disease. 相似文献
31P and 1H nuclear magnetic resonance spectroscopy (NMR) was used to study the metabolism of intact superfused cortical brain slices during normoxia and anoxia. Attention was focused on quantification of 1H NMR-detected glutamate by a water-suppressed spin-echo method, using N-acetyl aspartate as an internal concentration reference. To quantify the 1H NMR signals, the spin-spin relaxation times and saturation effects were estimated for given metabolites. In addition, absolute concentrations of metabolites were determined by biochemical methods from acid extracts of the preparations after NMR experiments. Under aerobic conditions, 1H NMR detected 79% of the glutamate determined biochemically from the brain slice extracts. During anoxia in the absence of glucose when a severe energetic failure was evident, both 1H NMR and biochemical assays gave closely matching levels for glutamate. We conclude that in the brain cortex 21% of glutamate is located in an intracellular compartment in which this amino acid does not contribute to the 1H NMR signal. However, during severe anoxia an intracellular reorganisation occurs increasing the detectability of this amino acid neurotransmitter by NMR. 相似文献
Deuterium magnetic resonance (2H-NMR) and Raman spectroscopy are used to investigate order and fluidity at the terminal methyl position in 16-d3, 16′-d3 dipalmitoylphosphatidylcholine (16-d6 DPPC) multibilayers. These methods reveal substantial motion and disorder in the gel phase, 5–10°C below the gel-liquid crystal phase transition temperature (Tm). The phase transition is sensed in the 2H-NMR spectrum as a reduction in the quadrupole splitting from 14 kHz to 3 kHz. In contrast, the Raman parameter used to characterize the CD3 vibrations is quite insensitive to the melting process, although an analogous parameter does sense disordering at Tm at the 10 and 10′ position in 10-d2, 10′-d2 DPPC. The difference in the response of the NMR and Raman parameters may arise because the vibrational spectrum of the CD3 group is inhomogenously broadened and is therefore quite sensitive to alterations in the local environment around the methyl group. In contrast, the NMR quadrupole splitting is sensitive to both local motion of the methyl group and, near Tm, to motions of the CD2 group induced by transgauche isomerizations further up the chain. The difficulties that arise when results from different spectroscopic techniques are compared are demonstrated. 相似文献
The multimodal magnetic resonance imaging (MMRI) has an important role in cancer care. This non-invasive and non-ionizing technique provides vital information for the diagnosis and answers to various questions of clinicians before, during and after treatment. The MMRI can specify the localization expanding process; it allows establishing the differential diagnosis of a brain tumor and a circumscribed lesion of another type, to approach the diagnosis of the tumor lesion nature as well as establishing the histological grade of glial tumor in view of lesion monitoring after treatment. The multimodal magnetic resonance imaging has a major contribution to the management progress of the brain tumors. Thus, this paper reviews the value of these MRI modalities in the diagnosis, management and therapy of brain tumors. 相似文献
To investigate the effects of chronic morphine treatment and its cessation on thalamus and the somatosensory cortex, an ex vivo high resolution (500 MHz) 1H nuclear magnetic resonance spectroscopy (NMRS), in the present study, was applied to detect multiple alterations of neurochemicals and/or neurometabolites in the rats. Ten days of chronic morphine administration was observed to markedly increase the total amount of lactate (Lac), myo-inositol (my-Ins) (each P < 0.01) and aspartate (Asp) (P < 0.05), and significantly decrease that of glutamate (Glu) and glutamine (Gln) in the rats thalamus (each P < 0.05). In the somatosensory cortex, chronic morphine was shown to increase the level of Lac and my-Ins, and decrease that of Glu (each P < 0.05). Interestingly, the ratio of Glu/GABA was found to decrease in these two brain areas after chronic morphine treatment, and among the detectable neurochemicals in those two cerebral areas, only taurine (Tau) showed to result in a significant increment in thalamus during the process of morphine discontinuation (P < 0.05). Moreover, the alterations of multiple neurochemicals due to chronic morphine exhibited a tendency of recovery to the normal level over the course of morphine withdrawal. The results suggested that, in thalamus and the somatosensory cortex, chronic morphine administration and its cessation could induce multiple neurochemical changes, which may involve in the brain energy metabolism, activity and transition of neurotransmitters. 相似文献
Objective: Muscle triglyceride can be assessed in vivo using computed tomography (CT) and 1H magnetic resonance spectroscopy (MRS), two techniques that are based on entirely different biophysical principles. Little is known, however, about the cross‐correlation between these techniques and their test—retest reliability. Research Methods and Procedures: We compared mean muscle attenuation (MA) in soleus and tibialis anterior (TA) muscles measured by CT with intra‐ and extramyocellular lipids (IMCL and EMCL, respectively) measured by MRS in 51 volunteers (26 to 72 years of age, BMI = 25.5 to 39.3 kg/m2). MA of midthighs was also measured in a subset (n = 19). Test—retest measurements were performed by CT (n = 6) and MRS (n = 10) in separate sets of volunteers. Results: MA of soleus was significantly associated with IMCL (r = ?0.64) and EMCL, which by multiple regression analysis was explained mostly by IMCL (p < 0.001) rather than EMCL (β = ?0.010, p = 0.94). Muscle triglyc‐eride was lower in TA than in soleus, and MA of TA was significantly correlated with EMCL (r = ?0.40) but not IMCL (r = ?0.16). By CT, MA of midthighs was correlated with MA in soleus (r = 0.40, p = 0.07) and whole calf (r = 0.62, p < 0.05). Finally, both MA and IMCL were highly reliable in soleus (coefficient of variation = <2% and 6.7%, respectively) and less reliable in TA (4% and 10%, respectively). Discussion: These results support the use of both CT and MRS as reliable methods for assessing skeletal muscle lipid. 相似文献
Spinocerebellar ataxia type 1 (SCA1) is a hereditary, progressive and fatal movement disorder that primarily affects the cerebellum. Non‐invasive imaging markers to detect early disease in SCA1 will facilitate testing and implementation of potential therapies. We have previously demonstrated the sensitivity of neurochemical levels measured by 1H magnetic resonance spectroscopy (MRS) to progressive neurodegeneration using a transgenic mouse model of SCA1. In order to investigate very early neurochemical changes related to neurodegeneration, here we utilized a knock‐in mouse model, the Sca1154Q/2Q line, which displays milder cerebellar pathology than the transgenic model. We measured cerebellar neurochemical profiles of Sca1154Q/2Q mice and wild‐type littermates using 9.4T MRS at ages 6, 12, 24, and 39 weeks and assessed the cerebellar pathology of a subset of the mice at each time point. The Sca1154Q/2Q mice displayed very mild cerebellar pathology even at 39 weeks, however, were distinguished from wild types by MRS starting at 6 weeks. Taurine and total choline levels were significantly lower at all ages and glutamine and total creatine levels were higher starting at 12 weeks in Sca1154Q/2Q mice than controls, demonstrating the sensitivity of neurochemical levels to neurodegeneration related changes in the absence of overt pathology.
Background: Hydroxyethyl starch (HES) is one of the most used colloids for intravascular volume replacement during anesthesia. Aim: To investigate the existence of a chemical interaction between HES and the anesthetic propofol by in vitro propofol dosing, computational docking, and examination of a complex between propofol and HES by infrared (IR), ultraviolet (UV), and 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Methods: Ten samples with human plasma mixed with HES or lactated Ringers (n?=?5 for each fluid) were prepared, and the propofol free fraction was quantified until 50?min, using gas chromatography-mass spectrometry. The docking study was performed between HES and propofol and compared with controls. The binding affinities between HES and the small molecules were evaluated by binding free energy approximation (ΔGb, kJ?mol?1). The IR, UV, and NMR spectra were measured for propofol, HES, and a mixture of both obtained by the kneading method. Results: Propofol concentrations were significantly lower in the HES samples than in the LR samples (p?=?.021). The spectroscopic characterization of propofol combined with HES revealed differences in spectra and docking studies reinforced a potential interaction between propofol and HES. Conclusions: Propofol and HES form a complex with different physical-bio-chemical behavior than the single drugs, which may be an important drug interaction. Further studies should evaluate its clinical effects. 相似文献
Solid-state magic-angle spinning nuclear magnetic resonance (NMR) has sufficient resolving power for full assignment of resonances and structure determination of immobilised biological samples as was recently shown for a small microcrystalline protein. In this work, we show that highly resolved spectra may be obtained from a system composed of a receptor-toxin complex. The NMR sample used for our studies consists of a membrane preparation of the nicotinic acetylcholine receptor from the electric organ of Torpedo californica which was incubated with uniformly 13C-,15N-labelled neurotoxin II. Despite the large size of the ligand-receptor complex ( > 290 kDa) and the high lipid content of the sample, we were able to detect and identify residues from the ligand. The comparison with solution NMR data of the free toxin indicates that its overall structure is very similar when bound to the receptor, but significant changes were observed for one isoleucine. 相似文献
The capacity of brain to dephosphorylate glucose-6-phosphate has been established, but the magnitude and significance of this capacity in vivo are debated, particularly in regard to dephosphorylation of the glucose analog 2-deoxyglucose. We now report results of external measurement in the brains of conscious rats with simultaneous resolution and quantification of both 2-deoxyglucose and its phosphorylated product by nuclear magnetic resonance (NMR) techniques that used 2-[6-13]deoxyglucose together with proton-decoupled 13C surface-coil spectroscopy. As NMR techniques require large doses of 2-deoxyglucose, a dose comparison was first made using decay curves of total label after tracer doses of 2-[14C]deoxyglucose without versus with unlabeled deoxyglucose at 500 mg/kg (the NMR dose). Similar cerebral half-lives for the two doses were found, and no behavioral evidence for toxicity of the NMR dose was seen. In vivo NMR monitoring of conscious rats showed that the analog reached maximal cerebral concentration within 10 min of the intravenous bolus and decayed with a half-life of 29 +/- 7 min (n = 4; mean +/- SEM), whereas 2-deoxyglucose-6-phosphate reached peak concentration between 30 and 40 min and decayed with a half-life of 2.1 +/- 0.3 h, equivalent to a fractional loss of 0.8%/min. Thirty-one percent (+/- 5%) of the total analog pool (which showed a half-life of 1.4 h) consisted of 2-deoxyglucose at 45 min after the bolus. The results support an active but limited role for dephosphorylation by normal brain in glucose analog (and potentially glucose) metabolism in the unstimulated conscious rat and a wide concentration range for the metabolic operations involved. 相似文献