首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Huntington's disease (HD) is one of many neurodegenerative diseases with reported alterations in brain iron homeostasis that may contribute to neuropathogenesis. Iron accumulation in the specific brain areas of neurodegeneration in HD has been proposed based on observations in post‐mortem tissue and magnetic resonance imaging studies. Altered magnetic resonance imaging signal within specific brain regions undergoing neurodegeneration has been consistently reported and interpreted as altered levels of brain iron. Biochemical studies using various techniques to measure iron species in human samples, mouse tissue, or in vitro has generated equivocal data to support such an association. Whether elevated brain iron occurs in HD, plays a significant contributing role in HD pathogenesis, or is a secondary effect remains currently unclear.

  相似文献   


3.
Blood–brain barrier (BBB) disruption occurring within the first few hours of ischemic stroke onset is closely associated with hemorrhagic transformation following thrombolytic therapy. However, the mechanism of this acute BBB disruption remains unclear. In the neurovascular unit, neurons do not have direct contact with the endothelial barrier; however, they are highly sensitive and vulnerable to ischemic injury, and may act as the initiator for disrupting BBB when cerebral ischemia occurs. Herein, we employed oxygen–glucose deprivation (OGD) and an in vitro BBB system consisting of brain microvascular cells and astrocytes to test this hypothesis. Neurons (CATH.a cells) were exposed to OGD for 3‐h before co‐culturing with endothelial monolayer (bEnd 3 cells), or endothelial cells plus astrocytes (C8‐D1A cells). Incubation of OGD‐treated neurons with endothelial monolayer alone did not increase endothelial permeability. However, when astrocytes were present, the endothelial permeability was significantly increased, which was accompanied by loss of occludin and claudin‐5 proteins as well as increased vascular endothelial growth factor (VEGF) secretion into the conditioned medium. Importantly, all these changes were abolished when VEGF was knocked down in astrocytes by siRNA. Our findings suggest that ischemic neurons activate astrocytes to increase VEGF production, which in turn induces endothelial barrier disruption.

  相似文献   


4.
Alcohol exposure affects neuronal plasticity in the adult and developing brain. Astrocytes play a major role in modulating neuronal plasticity and are a target of ethanol. Tissue plasminogen activator (tPA) is involved in modulating neuronal plasticity by degrading the extracellular matrix proteins including fibronectin and laminin and is up‐regulated by ethanol in vivo. In this study we explored the hypothesis that ethanol affects DNA methylation in astrocytes thereby increasing expression and release of tPA. It was found that ethanol increased tPA mRNA levels, an effect mimicked by an inhibitor of DNA methyltransferase (DNMT) activity. Ethanol also increased tPA protein expression and release, and inhibited DNMT activity with a corresponding decrease in DNA methylation levels of the tPA promoter. Furthermore, it was observed that protein levels of DNMT3A, but not DNMT1, were reduced in astrocytes after ethanol exposure. These novel studies show that ethanol inhibits DNA methylation in astrocytes leading to increased tPA expression and release; this effect may be involved in astrocyte‐mediated inhibition of neuronal plasticity by alcohol.

  相似文献   


5.
Paclitaxel is a chemotherapeutic agent widely used for treating carcinomas. Patients receiving paclitaxel often develop neuropathic pain and have a reduced quality of life which hinders the use of this life‐saving drug. In this study, we determined the role of GABA transporters in the genesis of paclitaxel‐induced neuropathic pain using behavioral tests, electrophysiology, and biochemical techniques. We found that tonic GABA receptor activities in the spinal dorsal horn were reduced in rats with neuropathic pain induced by paclitaxel. In normal controls, tonic GABA receptor activities were mainly controlled by the GABA transporter GAT‐1 but not GAT‐3. In the spinal dorsal horn, GAT‐1 was expressed at presynaptic terminals and astrocytes while GAT‐3 was only expressed in astrocytes. In rats with paclitaxel‐induced neuropathic pain, the protein expression of GAT‐1 was increased while GAT‐3 was decreased. This was concurrently associated with an increase in global GABA uptake. The paclitaxel‐induced attenuation of GABAergic tonic inhibition was ameliorated by blocking GAT‐1 but not GAT‐3 transporters. Paclitaxel‐induced neuropathic pain was significantly attenuated by the intrathecal injection of a GAT‐1 inhibitor. These findings suggest that targeting GAT‐1 transporters for reversing disinhibition in the spinal dorsal horn may be a useful approach for treating paclitaxel‐induced neuropathic pain.

  相似文献   


6.
Restoration of correct neural activity following central nervous system (CNS) damage requires the replacement of degenerated axons with newly outgrowing, functional axons. Unfortunately, spontaneous regeneration is largely lacking in the adult mammalian CNS. In order to establish successful regenerative therapies, an improved understanding of axonal outgrowth and the various molecules influencing it, is highly needed. Matrix metalloproteinases (MMPs) constitute a family of zinc‐dependent proteases that were sporadically reported to influence axon outgrowth. Using an ex vivo retinal explant model, we were able to show that broad‐spectrum MMP inhibition reduces axon outgrowth of mouse retinal ganglion cells (RGCs), implicating MMPs as beneficial factors in axonal regeneration. Additional studies, using more specific MMP inhibitors and MMP‐deficient mice, disclosed that both MMP‐2 and MT1‐MMP, but not MMP‐9, are involved in this process. Furthermore, administration of a novel antibody to MT1‐MMP that selectively blocks pro‐MMP‐2 activation revealed a functional co‐involvement of these proteinases in determining RGC axon outgrowth. Subsequent immunostainings showed expression of both MMP‐2 and MT1‐MMP in RGC axons and glial cells. Finally, results from combined inhibition of MMP‐2 and β1‐integrin were suggestive for a functional interaction between these molecules. Overall, our data indicate MMP‐2 and MT1‐MMP as promising axonal outgrowth‐promoting molecules.

  相似文献   


7.
It has been suggested that propofol can modulate microglial activity and hence may have potential roles against neuroinflammation following brain ischemic insult. However, whether and how propofol can inhibit post‐cardiac arrest brain injury via inhibition of microglia activation remains unclear. A rat model of asphyxia cardiac arrest (CA) was created followed by cardiopulmonary resuscitation. CA induced marked microglial activation in the hippocampal CA1 region, revealed by increased OX42 and P2 class of purinoceptor 7 (P2X7R) expression, as well as p38 MAPK phosphorylation. Morris water maze showed that learning and memory deficits following CA could be inhibited or alleviated by pre‐treatment with the microglial inhibitor minocycline or propofol. Microglial activation was significantly suppressed likely via the P2X7R/p‐p38 pathway by propofol. Moreover, hippocampal neuronal injuries after CA were remarkably attenuated by propofol. In vitro experiment showed that propofol pre‐treatment inhibited ATP‐induced microglial activation and release of tumor necrosis factor‐α and interleukin‐1β. In addition, propofol protected neurons from injury when co‐culturing with ATP‐treated microglia. Our data suggest that propofol pre‐treatment inhibits CA‐induced microglial activation and neuronal injury in the hippocampus and ultimately improves cognitive function.

  相似文献   


8.
Glioblastomas are lethal brain tumors that resist current cytostatic therapies. Vitamin C may antagonize the effects of reactive oxygen species (ROS) generating therapies; however, it is often used to reduce therapy‐related side effects despite its effects on therapy or tumor growth. Because the mechanisms of vitamin C uptake in gliomas are currently unknown, we evaluated the expression of the sodium‐vitamin C cotransporter (SVCT) and facilitative hexose transporter (GLUT) families in human glioma cells. In addition, as microglial cells can greatly infiltrate high‐grade gliomas (constituting up to 45% of cells in glioblastomas), the effect of TC620 glioma cell interactions with microglial‐like HL60 cells on vitamin C uptake (Bystander effect) was determined. Although glioma cells expressed high levels of the SVCT isoform‐2 (SVCT2), low functional activity, intracellular localization and the expression of the dominant‐negative isoform (dnSVCT2) were observed. The increased glucose metabolic activity of glioma cells was evident by the high 2‐Deoxy‐d ‐glucose and dehydroascorbic acid (DHA) uptake rates through the GLUT isoform‐1 (GLUT1), the main DHA transporter in glioblastoma. Co‐culture of glioma cells and activated microglial‐like HL60 cells resulted in extracellular ascorbic acid oxidation and high DHA uptake by glioma cells. This Bystander effect may explain the high antioxidative potential observed in high‐grade gliomas.

  相似文献   


9.
10.
Cholinergic signaling plays an important role in regulating the growth and regeneration of axons in the nervous system. The α7 nicotinic receptor (α7) can drive synaptic development and plasticity in the hippocampus. Here, we show that activation of α7 significantly reduces axon growth in hippocampal neurons by coupling to G protein‐regulated inducer of neurite outgrowth 1 (Gprin1), which targets it to the growth cone. Knockdown of Gprin1 expression using RNAi is found sufficient to abolish the localization and calcium signaling of α7 at the growth cone. In addition, an α7/Gprin1 interaction appears intimately linked to a Gαo, growth‐associated protein 43, and CDC42 cytoskeletal regulatory pathway within the developing axon. These findings demonstrate that α7 regulates axon growth in hippocampal neurons, thereby likely contributing to synaptic formation in the developing brain.

  相似文献   


11.
The STriatal‐Enriched protein tyrosine Phosphatase 61 (STEP61) inhibits the activity of the tyrosine kinase Fyn and dephosphorylates the GluN2B subunit of the NMDA receptor, whereas the protein kinase A phosphorylation of STEP61 inhibits the activity of the phosphatase (Pharmacol. Rev., 64, 2012 , p. 65). Previously, we found that ethanol activates Fyn in the dorsomedial striatum (DMS) leading to GluN2B phosphorylation, which, in turn, underlies the development of ethanol intake (J. Neurosci., 30, 2010 , p. 10187). Here, we tested the hypothesis that inhibition of STEP61 by ethanol is upstream of Fyn/GluN2B. We show that exposure of mice to ethanol increased STEP61 phosphorylation in the DMS, which was maintained after withdrawal and was not observed in other striatal regions. Specific knockdown of STEP61 in the DMS of mice enhanced ethanol‐mediated Fyn activation and GluN2B phosphorylation, and increased ethanol intake without altering the level of water, saccharine, quinine consumption or spontaneous locomotor activity. Together, our data suggest that blockade of STEP61 activity in response to ethanol is sufficient for the activation of the Fyn/GluN2B pathway in the DMS. Being upstream of Fyn and GluN2B, inactive STEP61 in the DMS primes the induction of ethanol intake.

  相似文献   


12.
Cu/Zn‐superoxide dismutase is misfolded in familial and sporadic amyotrophic lateral sclerosis, but it is not clear how this triggers endoplasmic reticulum (ER) stress or other pathogenic processes. Here, we demonstrate that mutant SOD1 (mSOD1) is predominantly found in the cytoplasm in neuronal cells. Furthermore, we show that mSOD1 inhibits secretory protein transport from the ER to Golgi apparatus. ER‐Golgi transport is linked to ER stress, Golgi fragmentation and axonal transport and we also show that inhibition of ER‐Golgi trafficking preceded ER stress, Golgi fragmentation, protein aggregation and apoptosis in cells expressing mSOD1. Restoration of ER‐Golgi transport by over‐expression of coatomer coat protein II subunit Sar1 protected against inclusion formation and apoptosis, thus linking dysfunction in ER‐Golgi transport to cellular pathology. These findings thus link several cellular events in amyotrophic lateral sclerosis into a single mechanism occurring early in mSOD1 expressing cells.

  相似文献   


13.
14.
Binge drinking is a common form of alcohol abuse that involves repeated rounds of intoxication followed by withdrawal. The episodic effects of binge drinking and withdrawal on brain resident cells are thought to contribute to neural remodeling and neurological damage. However, the molecular mechanisms for these neurodegenerative effects are not understood. Ethanol (EtOH) regulates the metabolism of ceramide, a highly bioactive lipid that is enriched in brain. We used a mouse model of binge drinking to determine the effects of EtOH intoxication and withdrawal on brain ceramide metabolism. Intoxication and acute alcohol withdrawal were each associated with distinct changes in ceramide regulatory genes and metabolic products. EtOH intoxication was accompanied by decreased concentrations of multiple ceramides, coincident with reductions in the expression of enzymes involved in the production of ceramides, and increased expression of ceramide‐degrading enzymes. EtOH withdrawal was associated with specific increases in ceramide C16:0, C18:0, and C20:0 and increased expression of enzymes involved with ceramide production. These data suggest that EtOH intoxication may evoke a ceramide phenotype that is neuroprotective, whereas EtOH withdrawal results in a metabolic shift that increases the production of potentially toxic ceramide species.

  相似文献   


15.
For our nervous system to function properly, each neuron must generate a single axon and elongate the axon to reach its target. It is known that actin filaments and their dynamic interaction with microtubules within growth cones play important roles in inducing axon extension. However, it remains unclear how cytoskeletal dynamics is controlled in growth cones. In this study, we report that Rufy3, a RUN domain‐containing protein, is a neuron‐specific and actin filament‐relevant protein. We find that the appropriate expression of Rufy3 in mouse hippocampal neurons is required for the development of a single axon and axon growth. Our results show that Rufy3 specifically interacts with actin filament‐binding proteins, such as Fascin, and colocalizes with Fascin in growth cones. Knockdown of Rufy3 impairs the distribution of Fascin and actin filaments, accompanied by an increased proportion of neurons with multiple axons and a decrease in the axon length. Therefore, Rufy3 may be particularly important for neuronal axon elongation by interacting with Fascin to control actin filament organization in axonal growth cones.

  相似文献   


16.
Human immunodeficiency virus‐1 (HIV) is a public health issue and a major complication of the disease is NeuroAIDS. In vivo, microglia/macrophages are the main cells infected. However, a low but significant number of HIV‐infected astrocytes has also been detected, but their role in the pathogenesis of NeuroAIDS is not well understood. Our previous data indicate that gap junction channels amplify toxicity from few HIV‐infected into uninfected astrocytes. Now, we demonstrated that HIV infection of astrocytes results in the opening of connexin43 hemichannels (HCs). HIV‐induced opening of connexin43 HCs resulted in dysregulated secretion of dickkopf‐1 protein (DKK1, a soluble wnt pathway inhibitor). Treatment of mixed cultures of neurons and astrocytes with DKK1, in the absence of HIV infection, resulted in the collapse of neuronal processes. HIV infection of mixed cultures of human neurons and astrocytes also resulted in the collapse of neuronal processes through a DKK1‐dependent mechanism. In addition, dysregulated DKK1 expression in astrocytes was observed in human brain tissue sections of individuals with HIV encephalitis as compared to tissue sections from uninfected individuals. Thus, we demonstrated that HIV infection of astrocytes induces dysregulation of DKK1 by a HC‐dependent mechanism that contributes to the brain pathogenesis observed in HIV‐infected individuals.

  相似文献   


17.
18.
Recent studies reveal that cocaine experience results in persistent neuroadaptive changes within glutamate (Glu) synapses in brain areas associated with drug reward. However, it remains unclear whether cocaine affects Glu release in drug‐naive animals and how it is altered by drug experience. Using high‐speed amperometry with enzyme‐based and enzyme‐free biosensors in freely moving rats, we show that an initial intravenous cocaine injection at a low self‐administering dose (1 mg/kg) induces rapid, small and transient Glu release in the nucleus accumbens shell (NAc), which with subsequent injections rapidly becomes a much stronger, two‐component increase. Using cocaine‐methiodide, cocaine's analog that does not cross the blood–brain barrier, we confirm that the initial cocaine‐induced Glu release in the NAc has a peripheral neural origin. Unlike cocaine, Glu responses induced by cocaine‐methiodide rapidly habituate following repeated exposure. However, after cocaine experience this drug induces cocaine‐like Glu responses. Hence, the interoceptive actions of cocaine, which essentially precede its direct actions in the brain, play a critical role in experience‐dependent alterations in Glu release, cocaine‐induced neural sensitization and may contribute to cocaine addiction.

  相似文献   


19.
20.
Microglia are brain macrophages, which can undergo multinucleation to give rise to multinucleated giant cells that accumulate with ageing and some brain pathologies. However, the origin, regulation and function of multinucleate microglia remain unclear. We found that inflammatory stimuli, including lipopolysaccharide, amyloid β, α‐synuclein, tumour necrosis factor‐α and interferon γ, but not interleukin‐4, induced multinucleation of cultured microglia: primary rat cortical microglia and the murine microglial cell line BV‐2. Inflammation‐induced multinucleation was prevented by a protein kinase C (PKC) inhibitor Gö6976 (100 nM) and replicated by a PKC activator phorbol myristate acetate (160 nM). Multinucleation was reversible and not because of cell fusion or phagocytosis, but rather failure of cytokinesis. Time‐lapse imaging revealed that some dividing cells failed to abscise, even after formation of long cytoplasmic bridges, followed by retraction of bridge and reversal of cleavage furrow to form multinucleate cells. Multinucleate microglia were larger and 2–4 fold more likely to phagocytose large beads and both dead and live PC12 cells. We conclude that multinucleate microglia are reversibly generated by inflammation via PKC inhibition of cytokinesis, and may have specialized functions/dysfunctions including the phagocytosis of other cells.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号