首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Target spot, caused by the fungus Corynespora cassiicola, has become a serious foliar disease in soybean production in the Brazilian Cerrado. Information in the literature regarding the biochemical defence responses of soybean to C. cassiicola infection is rare. Therefore, the objective of this study was to determine the biochemical features associated with soybean resistance to target spot. The activities of chitinases (CHI), β‐1‐3‐glucanases (GLU), phenylalanine ammonia‐lyases (PAL), peroxidases (POX), polyphenol oxidases (PPO) and lipoxygenases (LOX), as well as the concentrations of total soluble phenolics (TSP) and lignin‐thioglycolic acid (LTGA) derivatives, were determined in soybean leaves from both a resistant (FUNDACEP 59) and a susceptible (TMG 132) cultivar. The target spot severity, number of lesions per cm2 of leaflet and area under the disease progress curve were significantly lower for plants from cv. FUNDACEP 59 compared to plants from cv. TMG 132. The GLU, CHI, PAL, POX and PPO activities and the concentration of LTGA derivatives increased significantly, whereas LOX activity decreased significantly on the leaves infected by C. cassiicola. Inoculated plants from cv. FUNDACEP 59 showed a higher PPO activity and concentrations of TSP and LTGA derivatives at 4 and 6 days after inoculation compared to plants from cv. TMG 132. In conclusion, the results of this study demonstrated that the defence‐related enzyme activities increased upon C. cassiicola infection, regardless of the basal level of resistance of the cultivar studied. The increases in PPO activity and concentrations of TSP and LTGA derivatives, but lower LOX activity, at early stages of C. cassiicola infection were highly associated with soybean resistance to target spot.  相似文献   

2.
Leaf scald, caused by Monographella albescens, is one of the major diseases in rice worldwide. This study investigated the effect of silicon (Si) on the photosynthetic gas exchange parameters [net CO2 assimilation rate (A), stomatal conductance to water vapour (gs), transpiration rate (E)] and internal CO2 concentration (Ci), chlorophyll (Chl) fluorescence a parameters [minimal fluorescence (F0), maximum fluorescence (Fm), maximum quantum yield of photosystem II (Fv/Fm)], photochemical quenching coefficient (qp), effective quantum yield of PSII [Y(II)], quantum yield of regulated energy dissipation [Y(NPQ)] and quantum yield dissipation non‐regulated [Y(NO)] and the concentrations of pigments in rice plants grown in nutrient solutions containing either 0 (?Si) or 2 mM Si (+Si) and non‐inoculated or inoculated with M. albescens. Leaf scald severity decreased with higher foliar Si concentration. For the inoculated +Si plants, A, gs and E were significantly higher in comparison with the inoculated ?Si plants, in which Ci was significantly increased. Similarly, the concentrations of Chla, Chlb, total Chla+b and carotenoids were higher for the +Si plants in comparison with the ?Si plants. Changes in the images of Chl a fluorescence were first observed precisely on the ?Si plants leaves in comparison with the +Si plants. A decrease of qP and Y(II) in inoculated ?Si plants, in comparison with the inoculated +Si plants, was accompanied by an increase in Y(NPQ) and Y(NO). Notably, the extent of the leaf areas was much more evident for Y(II) and qP in comparison with F0, Fm and Fv/Fm, suggesting that Y(II) and qP were good predictors in detecting the early effects of leaf scald on the leaf photosynthesis. For the +Si non‐inoculated plants, changes in Y(II) were associated with alterations in both Y(NPQ) and Y(NO) compared with non‐inoculated ?Si plants. In conclusion, the photosynthetic performance (as demonstrated by the gas exchange and Chl a fluorescence parameters) and the pigment pools of rice plants infected with M. albescens were preserved by Si supply and, therefore, provided an increase in rice resistance against leaf scald.  相似文献   

3.
4.
5.
Plants evolve a strategy to survive the attacks of potential pathogens by inducing the microbial signal molecules. In this study, plant defence responses were induced in four different varieties of Arachis hypogaea (J‐11, GG‐20, TG‐26 and TPG41) using the fungal components of Sclerotium rolfsii in the form of fungal culture filtrate (FCF) and mycelial cell wall (MCW), and the levels of defence‐related signal molecule salicylic acid (SA), marker enzymes such as peroxidase (POX), phenylalanine ammonia lyase (PAL), β‐1,3‐glucanase and lignin were determined. There was a substantial fold increase in POX, PAL, SA, β‐1,3‐glucanase and lignin content in FCF‐ and MCW‐treated plants of all varieties of groundnut when compared to that of control plants. The enzyme activities were much higher in FCF‐treated plants than in MCW‐treated plants. The increase in fold activity of enzymes and signal molecule varied between different varieties. These results indicate that the use of fungal components (FCF and MCW) had successfully induced systemic resistance in the four different varieties of groundnut plants against Sclerotium rolfsii.  相似文献   

6.
Exogenous foliar application of β-aminobutyric acid (BABA) led to a significant reduction in disease severity in Brassica carinata caused by Alternaria brassicae. To get a better insight about changes in defence-related enzymes like phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO), isoform analysis of superoxide dismutase (SOD) and peroxidase (POX) were studied. BABA-treated plants showed a significant increase in PAL, PPO enzyme activities and total phenolic content in response to pathogen inoculation. However, isoform analysis of SOD and POX revealed no change in isoform number but a quantitative change in activity was observed in response to pathogen.  相似文献   

7.
This study investigated the induced defence responses and protective effects on susceptible tomato (Lycopersicon esculentum Mill.) against Xanthomonas vesicatoria (Doidge) by a heat-treated aqueous extract (VLA) from dry necrotic tissue of ‘Lobeira’ (Solanum lycocarpum St. Hil.) branches infected with the fungus Crinipellis perniciosa (Stahel) compared with acibenzolar-S-methyl (ASM), a commercial inducer of resistance. Plantlets were sprayed with VLA and ASM and challenged 4 days later with a virulent strain of X. vesicatoria, under greenhouse conditions. The disease severity, fresh weight of shoots, the activities of phenol peroxidase (POX), polyphenol oxidase (PPO), chitinase (CHI), phenylalanine ammonia-lyase (PAL), lignin deposition, and soluble phenolic contents were evaluated in the leaf tissues. Reduction of the bacterial spot severity was observed in plantlets treated with VLA which conferred 63% of the ASM protection. This protective effect and lesion reduction promoted by VLA were probably associated particularly with POX and PAL activities, lignin deposition on leaf tissues and, to a less extent, CHI activity.  相似文献   

8.
Abstract

Enhancing the host resistance by using naturally occurring elicitors derived from pathogenic organisms is emerging as an ecofriendly approach in plant disease management. Cerebrosides, categorized as glycosphingolipids, were isolated and partially purified from the wilt causing fungus (Fusarium oxysporum f. sp. lycopersici). Cerebroside treatment significantly reduced the anthracnose disease incidence under greenhouse conditions. Cerebroside elicitors were found to stimulate the early H2O2 accumulation followed by the production of plant defense-related enzymes such as Phenylalanine ammonia lyase (PAL), Peroxidase (POX), Polyphenol oxidase (PPO), and Lipoxygenase (LOX) when applied to chilli (Capsicum annuum L.) plants by spray treatment and also induced the accumulation of capsidiol. Defense-related enzyme activities were increased by the elicitor treatment and an high level in activity was maintained during the experimental period. Under greenhouse conditions, the cerebroside elicitors effectively protected chilli plants against infection by anthracnose causing organism, Colletotrichum capsici.  相似文献   

9.
Bacterial stalk rot (BSR) of maize caused by Dickeya zeae is an important disease in northwest region of India. In the current study, eighty maize lines were evaluated for resistance against this disease. Of these, 20 were moderately resistant, 25 were moderately susceptible and the rest were highly susceptible to BSR. Six lines from each set were randomly selected. Activities of three antioxidant enzymes, viz. phenylalanine ammonia lyase (PAL), peroxidase (POX) and polyphenol oxidase (PPO) were analysed from these three sets of maize lines representing different levels of resistance. A trend of elevated activity of PAL, POX and PPO was observed in all the three sets of maize lines. The results showed significantly more activity of these three enzymes in moderately resistant than highly susceptible maize lines. The activity of PAL and PPO peaked after 48 hr and of POX after 72 hr of challenge inoculation by D. zeae in all the maize lines. The activity of these enzymes further correlated negatively with disease development. Our results show that PAL, POX and PPO play an important role in contributing towards resistance in maize against BSR.  相似文献   

10.
Abstract

The effect of endophytic Pseudomonas fluorescens isolates Endo2 and Endo35 on induced systemic disease protection against dry root rot of black gram (Vigna mungo L. Hepper) caused by Macrophomina phaseolina was investigated under glasshouse conditions. When the bacterized black gram plants were inoculated with dry root rot pathogen, the activities of peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia-lyase (PAL) were stimulated in addition to accumulation of phenolics and lignin. Activity of phenylalanine ammonia-lyase (PAL) reached the maximum 24 h after pathogen challenge inoculation, whereas the activities of PO and PPO reached the maximum at 72 h and 48 h, respectively. Isoform analysis revealed that a unique PPO3 isozyme was induced in bacterized black gram tissues inoculated with the pathogen. Phenolics were found to accumulate in bacterized black gram tissues challenged with M. phaseolina one day after pathogen challenge. The accumulation of phenolics reached maximum at the third day after pathogen inoculation. Similar observation was found in the lignin content of black gram plants. In untreated control plants, the accumulation of defence enzymes and chemicals started at the first day and drastically decreased 3 days after pathogen inoculation. These results suggest that induction of defense enzymes involved in phenylpropanoid pathway and accumulation of phenolics and PR-proteins might have contributed to restricting invasion of Macrophomina phaseolina in black gram roots.  相似文献   

11.
Charcoal rot disease, caused by the fungus Macrophomina phaseolina, leads to significant yield losses of soybean crops. One strategy to control charcoal rot is the use of antagonistic, root-colonizing bacteria. Rhizobacteria A5F and FPT721 and Pseudomonas sp. strain GRP3 were characterized for their plant growth-promotion activities against the pathogen. Rhizobacterium FPT721 exhibited higher antagonistic activity against the pathogen on dual plate assay compared to strain A5F and GRP3. FPT721 and GRP3 gave decreased disease intensity in terms of average number of pathogen-infested plants. Lipoxygenase (LOX), phenylalanine ammonia-lyase (PAL), and peroxidase (POD) activities were estimated in extracts of plants grown from seeds that were treated with rhizobacteria, and inoculated with spore suspension of M. phaseolina. The activity of these enzymes after challenge with the test pathogen increased. Strains FPT721 and GRP3 exhibited maximum increases in LOX, PAL and POD activity (U mg−1 fresh leaf wt) compared to strain A5F.  相似文献   

12.
Sweet basil is an important medicinal plant used especially for therapeutical potentials. Sweet basil is a common host for Cuscuta campestris, which has a negative effect on infected plants. Therefore, natural friendly control of C. campestris seems to be useful. It has been shown that carrageenans can act as elicitors of plant defense responses. In this work, the effect of κ-carrageenans on protection against C. campestris and suppression of its invasion in basils were studied. Basils were sprayed with a solution of κ-carrageenan (1?g?L?1), once a week, three times in total. Infection of basils with C. campestris was performed two days after the last carrageenan treatment. C. campestris stem and the leaves of basils were collected two weeks after C. campestris inoculation for biochemical studies. Treatment with carrageenan significantly increased shoot length and leaf area of basil and decreased C. campestris infestation by about 26%. The content of malondialdehyde, other aldehydes, hydrogen peroxide and lipoxygenase (LOX) activity increased significantly in basils parasitized by C. campestris. There were significant differences in phenylalanine ammonia lyase (PAL), catalase (CAT), superoxide dismutase (SOD) and peroxidase activity of parasitized basils by C. campestris compared with healthy basils. Carrageenan treatment of basils caused a significant increase in H2O2 content and the activity of PAL, CAT and SOD, but not of malondialdehyde, other aldehydes content and LOX, polyphenol oxidase (PPO) and peroxidases activity. The activated enzymatic defense system (PAL, PPO, CAT, SOD and peroxidase) in carrageenan-treated basils have a vital role in alleviating oxidative stress damage in infected plants, by removing excess reactive oxygen species and inhibiting LOX activity and lipid peroxidation that was observed in this study. Our results showed that the application of κ-carrageenan-induced beneficial effects in plants, with regard to growth stimulation and the activation of enzymatic defense system. Thus, carrageenan was recommended as a natural biostimulator for protection of plants against C. campestris.  相似文献   

13.
This study investigated the effect of silicon (Si) on resistance of bean plants (cv. ‘Peróla’) to anthracnose, caused by Colletotrichum lindemuthianum, grown in a nutrient solution containing 0 (?Si) or 2 mmol Si L?1 (+Si). The concentration of Si in leaf tissue and the incubation period increased by 55.2% and 14.3%, respectively, in +Si plants in relation to ?Si plants. The area under anthracnose progress curve and the severity estimated by the software QUANT significantly decreased by 32.9% and 27%, respectively, for +Si plants. Si did not affect the concentration of total soluble phenolics. Chitinases activity was higher in the advanced stages of infection by C. lindemuthianum for leaves of ?Si plants. β‐1,3‐Glucanase activity increased after C. lindemuthianum infection, but it was not enhanced by Si. Peroxidase and polyphenoloxidase activities had no apparent effect on the resistance of bean plants to anthracnose, regardless of the presence of Si. The increase in lignin concentration as well as on the phenylalanine ammonia‐lyase and lipoxygenase activities were important for the resistance of +Si plants against anthracnose. The results of this study suggest that Si may increase resistance to anthracnose in bean plants by enhancing certain biochemical mechanisms of defence as opposed to just acting as a physical barrier to penetration by C. lindemuthianum.  相似文献   

14.
The aim of the present study was to analyze induced expression of defense-related proteins in the soybean plants by rhizobacterial stain Carnobacterium sp. SJ-5 upon challenge inoculation with Fusarium oxysporum. Determination of the enzymatic activity of the different defense-related enzymes, phenylalanine ammonia lyase (PAL), lipoxygenase (LOX), peroxidase (POD) and polyphenol oxidase (PPO) was performed in the major parts of Glycine max L. Merrill using spectrophotometric method. Native-polyacrylamide gel electrophoresis analysis of the POD and PPO was employed followed by activity staining to find out the isoforms of respective enzymes. Activities of the PAL, LOX, POD and PPO were found to be highest in the bacterized root tissue of the soybean plants challenged with F. oxysporum. Isoform analysis revealed that PPO1, PPO4 and POD2 isoforms were expressed at higher levels in bacterized soybean root tissues challenge inoculated with the pathogen. Conclusively it was found that bacterial strain Carnobacterium sp. SJ-5 protect soybean plants from wilt disease caused by F. oxysporum by elicitation of the defense-related enzymes.  相似文献   

15.
16.
The effect of Pseudomonas fluorescens treatment and Fusarium oxysporum f. sp. cubense inoculation on induction of phenylalanine ammonia-lyase (PAL), peroxidase (POX), chitinase, -1,3-glucanase and accumulation of phenolics in banana (Musa sp.) was studied. When banana roots were treated with P. fluorescens strain Pf10, a two-fold increase in phenolic content in leaf tissues was recorded 3 – 6 d after treatment. Challenge inoculation with F. oxysporum, the wilt pathogen, steeply increased the phenolic content in P. fluorescens-treated banana plants. Significant increase in POX activity was detected 6 – 9 d after P. fluorescens treatment. PAL, chitinase and -1,3-glucanase activities increased significantly from 3 d after P. fluorescens treatment and reached the maximum 6 d after treatment. Challenge inoculation with F. oxysporum further increased the enzyme activities. These results suggest that the enhanced activities of defense enzymes and elevated content of phenolics may contribute to bioprotection of banana plants against F. oxysporum.  相似文献   

17.
The effect of iron oxide nanoparticle (NP) at four concentrations (0, 30, 60 and 90 ppm) and salinity at three levels (0, 50 and 100 mM) were investigated on rosmarinic acid (RA) production in 5-week-old Moldavian balm (Dracocephalum moldavica L.) plants. Salinity and spraying iron oxide NPs significantly affected tyrosine (Tyr), phenylalanine (Phe) and proline (Pro) amino acids content, Phenylalanine Ammonia-Lyase (PAL), Tyrosine Aminotransferase (TAT) and Rosmarinic Acid Synthase (RAS) genes expression levels, RA content, Polyphenol Oxidase (PPO), PAL and Superoxide Dismutase (SOD) activities, malondialdehyde (MDA) content and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity. PAL, TAT and RAS genes expression rate and content of RA were enhanced in Moldavian balm plants exposed by NaCl + NPs. The results of high performance liquid chromatography (HPLC) revealed that simultaneous application of 50 mM NaCl and 90 ppm NPs increases the RA content in leaf by 81.15% as compared to control plants. The Tyr and Phe contents decreased in Moldavian balm plants exposed to salt stress. Application of NPs had a positive effect on the content of these amino acids. Proline content increased under salinity stress and application of iron NPs induced a significant increase in the Pro content of leaf. The results revealed that PAL, PPO and SOD enzymes activities increased under salinity conditions. The highest activity of PPO and SOD was observed in 100 mM NaCl + 60 ppm NPs treatment. Simultaneous application of 100 mM NaCl + 90 ppm NPs increased the MDA content and DPPH radical scavenging activity compared to control plants. It can be concluded that the application of appropriate levels of NPs moderates the effect of salinity stress in D. moldavica L. and results in an increased amount of RA compared to control plants.  相似文献   

18.
Cell walls of plants are complex structures impregnated with various proteins having wide array of functions. In this study, twenty‐eight proteins isolated from tomato cell walls were subjected to MALDI‐TOF MS followed by mass peak analysis using ORIGIN 6 software. The mass peaks subjected to MASCOT and ProFound databases for peptide mass fingerprinting led to the identification of 9 protein domains. These proteins were further classified according to their functions. Fruit extracts of A. indica could elicit induction, localization and functioning of peroxidase (POX) and polyphenol oxidase (PPO) and their isoenzymes in cell walls of Lycopersicum esculentum (tomato) against Pseudomonas syringae pv. tomato. The results revealed the possible involvement of cell wall‐bound proteins in defence of plants against the invading pathogens. A number of novel isoenzymes of both POX and PPO were found to be located in the cell walls of the plants treated with neem extract. Neem extract can induce accumulation and binding of isoenzymes to cell walls. These isoenzymes could possibly protect host plants against the invading pathogens.  相似文献   

19.
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is the most devastating disease of brassica, but the mechanisms of basal or induced resistance in cabbage remain largely unknown. Here, we performed three experiments to investigate biochemical features associated with cabbage resistance to black rot. In the first experiment, biochemical changes were assessed in plants that were inoculated with a highly (UFPR 5) or a moderately (Xcc 10) aggressive Xcc isolate. In the second experiment, we examined the biochemical responses in two cultivars (Chato de Quintal [CQ] and Louco de Verão [LV], susceptible and moderately resistant to Xcc, respectively). Finally, we examined whether acibenzolar‐S‐methyl (ASM) could induce cabbage resistance to Xcc. Plants inoculated with the Xcc 10 isolate displayed higher activities of superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX), whereas activities of chitinase (CHI), β‐1,3‐glucanase (GLU) and polyphenol oxidase (PPO) as well as the concentrations of hydrogen peroxide (H2O2) and malondialdehyde (MDA) were lower compared to plants inoculated with the UFPR 5 isolate. The resistance of the cultivar LV to Xcc was linked to increases in the activities of CHI, GLU, and PPO and decreases in the activities of SOD, POX and APX as well as in the concentrations of H2O2 and MDA relative to the cultivar CQ. In general, ASM‐sprayed plants displayed higher activities for the enzymes studied, which was associated with decreased disease symptoms and oxidative stress. Taken together, our results demonstrated that high activities of both defence and antioxidant enzymes played a major role in both basal and induced resistance of cabbage to black rot.  相似文献   

20.
The ability of triadimefon (TDM), a triazole group of fungicide, to ameliorate salinity stress was studied in Catharanthus roseus (L.) G. Don. plants subjected to sodium chloride (NaCl) treatment. NaCl treatment at 80 mM level decreased overall growth of this plant and reduced the chlorophyll contents, protein, antioxidant enzymes such as peroxidase (POX), superoxide dismutase (SOD) and polyphenol oxidase (PPO). The root alkaloid ajmalicine got increased under salt treatment. When these stressed plants were treated with TDM at 15 mg l−1 concentration minimized the inhibitory effects of NaCl stress by increasing the root, shoot growth and leaf area and increased dry weight (DW), chlorophyll, protein contents and the activities of antioxidant enzymes like POX, SOD and PPO, thereby paved the way to overcome the salinity injury. The quantity of ajmalicine was again increased with the TDM treatment when compared to both control and NaCl treated plants. From these results, it is proved that the fungicide TDM have great role in the enhancement of plant antioxidative enzymes and the enhanced scavenging of potentially harmful free radicals, as a mechanism of protecting plants against noxious oxidative stress from the environment and also in the enhancement of active principles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号