首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Type VII secretion systems (ESX) are responsible for transport of multiple proteins in mycobacteria. How different ESX systems achieve specific secretion of cognate substrates remains elusive. In the ESX systems, the cytoplasmic chaperone EspG forms complexes with heterodimeric PE–PPE substrates that are secreted from the cells or remain associated with the cell surface. Here we report the crystal structure of the EspG1 chaperone from the ESX-1 system determined using a fusion strategy with T4 lysozyme. EspG1 adopts a quasi 2-fold symmetric structure that consists of a central β-sheet and two α-helical bundles. In addition, we describe the structures of EspG3 chaperones from four different crystal forms. Alternate conformations of the putative PE–PPE binding site are revealed by comparison of the available EspG3 structures. Analysis of EspG1, EspG3, and EspG5 chaperones using small-angle X-ray scattering reveals that EspG1 and EspG3 chaperones form dimers in solution, which we observed in several of our crystal forms. Finally, we propose a model of the ESX-3 specific EspG3–PE5–PPE4 complex based on the small-angle X-ray scattering analysis.  相似文献   

2.
3.
Pathogenic mycobacteria require type VII secretion (T7S) systems to transport virulence factors across their complex cell envelope. These bacteria have up to five of these systems, termed ESX‐1 to ESX‐5. Here, we show that ESX‐5 of Mycobacterium tuberculosis mediates the secretion of EsxN, PPE and PE_PGRS proteins, indicating that ESX‐5 is a major secretion pathway in this important pathogen. Using the ESX‐5 system of Mycobacterium marinum and Mycobacterium bovis BCG as a model, we have purified and analysed the T7S membrane complex under native conditions. blue native‐PAGE and immunoprecipitation experiments showed that the ESX‐5 membrane complex of both species has a size of ~ 1500 kDa and is composed of four conserved membrane proteins, i.e. EccB5, EccC5, EccD5 and EccE5. Subsequent limited proteolysis suggests that EccC5 and EccE5 mostly reside on the periphery of the complex. We also observed that EccC5 and EccD5 expression is essential for the formation of a stable membrane complex. These are the first data on a T7S membrane complex and, given the high conservation of its components, our data can likely be generalized to most mycobacterial T7S systems.  相似文献   

4.
Mycobacterium tuberculosis, the etiological agent of human tuberculosis, harbours five ESAT‐6/type VII secretion (ESX/T7S) systems. The first esx gene clusters were identified during the genome‐sequencing project of M. tuberculosis H37Rv. Follow‐up studies revealed additional genes playing important roles in ESX/T7S systems. Among the latter genes, one can find those that encode Pro‐Glu (PE) and Pro‐Pro‐Glu (PPE) proteins as well as a gene cluster that is encoded >260 kb upstream of the esx‐1 locus and encodes ESX‐1 secretion‐associated proteins EspA (Rv3616c), EspC (Rv3615c) and EspD (Rv3614c). The espACD cluster has been suggested to have an important function in ESX‐1 secretion since EspA‐EspC and EsxA–EsxB are mutually co‐dependent on each other for secretion. However, the molecular mechanism of this co‐dependence and interaction between the substrates remained unknown. In this issue of Molecular Microbiology, Lou and colleagues show that EspC forms high‐molecular weight polymerization complexes that resemble selected components of type II, III and/or IV secretion systems of Gram‐negative bacteria. Indeed, EspC‐multimeric complexes form filamentous structures that could well represent a secretion needle of ESX‐1 type VII secretion systems. This exciting observation opens new avenues for research to discover and characterize ESX/T7S components and elucidates the co‐dependence of EsxA/B secretion with EspA/C.  相似文献   

5.
Mycobacteria use the dedicated type VII protein secretion systems ESX-1 and ESX-5 to secrete virulence factors across their highly hydrophobic cell envelope. The substrates of these systems include the large mycobacterial PE and PPE protein families, which are named after their characteristic Pro-Glu and Pro-Pro-Glu motifs. Pathogenic mycobacteria secrete large numbers of PE/PPE proteins via the major export pathway, ESX-5. In addition, a few PE/PPE proteins have been shown to be exported by ESX-1. It is not known how ESX-1 and ESX-5 recognize their cognate PE/PPE substrates. In this work, we investigated the function of the cytosolic protein EspG(5), which is essential for ESX-5-mediated secretion in Mycobacterium marinum, but for which the role in secretion is not known. By performing protein co-purifications, we show that EspG(5) interacts with several PPE proteins and a PE/PPE complex that is secreted by ESX-5, but not with the unrelated ESX-5 substrate EsxN or with PE/PPE proteins secreted by ESX-1. Conversely, the ESX-1 paralogue EspG(1) interacted with a PE/PPE couple secreted by ESX-1, but not with PE/PPE substrates of ESX-5. Furthermore, structural analysis of the complex formed by EspG(5) and PE/PPE indicates that these proteins interact in a 1:1:1 ratio. In conclusion, our study shows that EspG(5) and EspG(1) interact specifically with PE/PPE proteins that are secreted via their own ESX systems and suggests that EspG proteins are specific chaperones for the type VII pathway.  相似文献   

6.
The function of EspI, a 70 kDa protein in Mycobacterium tuberculosis, has remained unclear. Although EspI is encoded by a gene within the esx‐1 locus, in this study we clarify previous conflicting results and show that EspI is not essential for ESX‐1‐mediated secretion or virulence in M. tuberculosis. We also provide evidence that reduction of cellular ATP levels in wild‐type M. tuberculosis using the drug bedaquiline completely blocks ESX‐1‐mediated secretion. Remarkably, M. tuberculosis lacking EspI fails to exhibit this phenotype. Furthermore, mutagenesis of a highly conserved ATP‐binding motif in EspI renders M. tuberculosis incapable of shutting down ESX‐1‐mediated secretion during ATP depletion. Collectively these results show that M. tuberculosis EspI negatively regulates the ESX‐1 secretion system in response to low cellular ATP levels and this function requires the ATP‐binding motif. In light of our results the potential significance of EspI in ESX‐1 function during latent tuberculosis infection and reactivation is also discussed.  相似文献   

7.
Mycobacterium tuberculosis harbors over 160 genes encoding PE/PPE proteins, several of which have roles in the pathogen’s virulence. A number of PE/PPE proteins are secreted via Type VII secretion systems known as the ESX secretion systems. One PE protein, LipY, has a triglyceride lipase domain in addition to its PE domain. LipY can regulate intracellular triglyceride levels and is also exported to the cell wall by one of the ESX family members, ESX-5. Upon export, LipY’s PE domain is removed by proteolytic cleavage. Studies using cells and crude extracts suggest that LipY’s PE domain not only directs its secretion by ESX-5, but also functions to inhibit its enzymatic activity. Here, we attempt to further elucidate the role of LipY’s PE domain in the regulation of its enzymatic activity. First, we established an improved purification method for several LipY variants using detergent micelles. We then used enzymatic assays to confirm that the PE domain down-regulates LipY activity. The PE domain must be attached to LipY in order to effectively inhibit it. Finally, we determined that full length LipY and the mature lipase lacking the PE domain (LipYΔPE) have similar melting temperatures. Based on our improved purification strategy and activity-based approach, we concluded that LipY’s PE domain down-regulates its enzymatic activity but does not impact the thermal stability of the enzyme.  相似文献   

8.
The ESX‐1 secretion system is required for pathogenicity of Mycobacterium tuberculosis (Mtb). Despite considerable research, little is known about the structural components of ESX‐1, or how these proteins are assembled into the active secretion apparatus. Here, we exploit the functionally related ESX‐1 apparatus of Mycobacterium smegmatis (Ms) to show that fluorescently tagged proteins required for ESX‐1 activity consistently localize to the cell pole, identified by time‐lapse fluoro‐microscopy as the non‐septal (old) pole. Deletions in Msesx1 prevented polar localization of tagged proteins, indicating the need for specific protein–protein interactions in polar trafficking. Remarkably, expression of the Mtbesx1 locus in Msesx1 mutants restored polar localization of tagged proteins, indicating establishment of the MtbESX‐1 apparatus in M. smegmatis. This observation illustrates the cross‐species conservation of protein interactions governing assembly of ESX‐1, as well as polar localization. Importantly, we describe novel non‐esx1‐encoded proteins, which affect ESX‐1 activity, which colocalize with ESX‐1, and which are required for ESX‐1 recruitment and assembly. This analysis provides new insights into the molecular assembly of this important determinant of Mtb virulence.  相似文献   

9.
A remarkable feature of the flagellar‐specific type III secretion system (T3SS) is the selective recognition of a few substrate proteins among the many thousand cytoplasmic proteins. Secretion substrates are divided into two specificity classes: early substrates secreted for hook‐basal body (HBB) construction and late substrates secreted after HBB completion. Secretion was reported to require a disordered N‐terminal secretion signal, mRNA secretion signals within the 5′‐untranslated region (5′‐UTR) and for late substrates, piloting proteins known as the T3S chaperones. Here, we utilized translational β‐lactamase fusions to probe the secretion efficacy of the N‐terminal secretion signal of fourteen secreted flagellar substrates in Salmonella enterica. We observed a surprising variety in secretion capability between flagellar proteins of the same secretory class. The peptide secretion signals of the early‐type substrates FlgD, FlgF, FlgE and the late‐type substrate FlgL were analysed in detail. Analysing the role of the 5′‐UTR in secretion of flgB and flgE revealed that the native 5′‐UTR substantially enhanced protein translation and secretion. Based on our data, we propose a multicomponent signal that drives secretion via the flagellar T3SS. Both mRNA and peptide signals are recognized by the export apparatus and together with substrate‐specific chaperones allowing for targeted secretion of flagellar substrates.  相似文献   

10.
Pathogenicity of Mycobacterium tuberculosis (M. tb) is mediated by the ESX‐1 secretion system, which exports EsxA and EsxB, the major virulence factors that are co‐secreted with EspA and EspC. Functional information about ESX‐1 components is scarce. Here, it was shown that EspC associates with EspA in the cytoplasm and membrane, then polymerizes during secretion from M. tb. EspC was localized by immuno‐gold electron microscopy in whole cells or cryosections as a surface‐exposed filamentous structure that seems to span the cell envelope. Consistent with these findings, purified EspC homodimerizes via disulphide bond formation, multimerizes and self‐assembles into long filaments in vitro. The C‐terminal domain is required for multimerization as truncation and selected point mutations therein impact EspC filament formation, thus reducing secretion of EsxA and causing attenuation of M. tb. The data are consistent with EspC serving either as a modulator of ESX‐1 function or as a component of the secretion apparatus.  相似文献   

11.
The pe/ppe genes represent one of the most intriguing aspects of the Mycobacterium tuberculosis genome. These genes are especially abundant in pathogenic mycobacteria, with more than 160 members in M. tuberculosis. Despite being discovered over 15 years ago, their function remains unclear, although various lines of evidence implicate selected family members in mycobacterial virulence. In this review, we use PE/PPE phylogeny as a framework within which we examine the diversity and putative functions of these proteins. We report on the evolution and diversity of the respective gene families, as well as the implications thereof for function and host immune recognition. We summarize recent findings on pe/ppe gene regulation, also placing this in the context of PE/PPE phylogeny. We collate data from several large proteomics datasets, providing an overview of PE/PPE localization, and discuss the implications this may have for host responses. Assessment of the current knowledge of PE/PPE diversity suggests that these proteins are not variable antigens as has been so widely speculated; however, they do clearly play important roles in virulence. Viewing the growing body of pe/ppe literature through the lens of phylogeny reveals trends in features and function that may be associated with the evolution of mycobacterial pathogenicity.  相似文献   

12.
Staphylococcus aureus encodes the specialized ESAT‐6 Secretion System (ESS). EsxA and EsxB are secreted by the ESS pathway, and share sequence features of ESAT‐6 and CFP‐10 of the Type VII Secretion System (T7SS) of Mycobacterium tuberculosis. Unlike ESAT‐6 and CFP‐10, EsxA and EsxB do not interact. Instead, EsxB associates with a novel substrate, EsxD, and EsxA dimerizes with itself or EsxC (EsaC). Unlike EsxA and EsxB, EsxC and EsxD do not share obvious sequence features of WXG100 proteins nor PE/PPE and Esp families of proteins, all of which belong to the pfam EsxAB clan of mycobacterial T7SS. EsxD carries the C‐terminal motif YxxxD/E that has been proposed to target T7 substrates for secretion in mycobacteria. Here, we find that deletion, but not amino acid substitutions, in this motif prevent secretion of EsxA and EsxC but not EsxB or EsxD. This is unlike the genetic inactivation of esxA, esxB, esxC or esxD that leads to loss of secretion of all four substrates. Thus, substrate secretion can be uncoupled by deleting the last six amino acids of EsxD. The physical association of EsxC and EsxD with canonical WXG100 proteins suggests that these proteins belong to the EsxAB clan.  相似文献   

13.
Mycobacterium tuberculosis encodes five gene clusters (ESX‐1 to ESX‐5) for Type VII protein secretion systems that are implicated in mycobacterial pathogenicity. Substrates for the secretion apparatus are encoded within the gene clusters and in additional loci that lack the components of the secretion apparatus. The best characterized substrates are the ESX complexes, 1:1 heterodimers of ESAT‐6 and CFP‐10, the prototypical member that has been shown to be essential for Mycobacterium tuberculosis pathogenesis. We have determined the structure of EsxRS, a homolog of EsxGH of the ESX‐3 gene cluster, at 1.91 Å resolution. The EsxRS structure is composed of two four‐helix bundles resulting from the 3D domain swapping of the C‐terminal domain of EsxS, the CFP‐10 homolog. The four‐helix bundles at the extremities of the complex have a similar architecture to the structure of ESAT‐6·CFP‐10 (EsxAB) of ESX‐1, but in EsxRS a hinge loop linking the α‐helical domains of EsxS undergoes a loop‐to‐helix transition that creates the domain swapped EsxRS tetramer. Based on the atomic structure of EsxRS and existing biochemical data on ESX complexes, we propose that higher order ESX oligomers may increase avidity of ESX binding to host receptor molecules or, alternatively, the conformational change that creates the domain swapped structure may be the basis of ESX complex dissociation that would free ESAT‐6 to exert a cytotoxic effect.  相似文献   

14.
The type‐VII ESX‐1 secretion apparatus, encoded by the esx‐1 genetic locus, is essential for the export of EsxA and EsxB, two major virulence factors of Mycobacterium tuberculosis. ESX‐1 also requires the products of the unlinked espACD operon for optimal function and these proteins are considered integral parts of the secretion apparatus. Here we show that the espACD operon is not necessary for the secretion of EspB, another ESX‐1 substrate, and this unimpeded secretion of EspB is associated with significant residual virulence. Upon further investigation, we found that purified EspB can facilitate M. tb virulence even in the absence of EsxA and EsxB, and may do so by binding the bioactive phospholipids phosphatidic acid and phosphatidylserine, both of which are potent bioactive molecules with prominent roles in eukaryotic cell signalling. Our findings provide new insights into the impact of the espACD operon on the ESX‐1 apparatus and reveal a distinct virulence function for EspB with novel implications in M. tb‐host interactions.  相似文献   

15.
Mycobacteria use type VII secretion systems (T7SSs) to translocate a wide range of proteins across their diderm cell envelope. These systems, also called ESX systems, are crucial for the viability and/or virulence of mycobacterial pathogens, including Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. We have previously shown that the M. tuberculosis ESX-5 system is unable to fully complement secretion in an M. marinum esx-5 mutant, suggesting species specificity in secretion. In this study, we elaborated on this observation and established that the membrane ATPase EccC5, possessing four (putative) nucleotide-binding domains (NBDs), is responsible for this. By creating M. marinum-M. tuberculosis EccC5 chimeras, we observed both in M. marinum and in M. tuberculosis that secretion specificity of PE_PGRS proteins depends on the presence of the cognate linker 2 domain of EccC5. This region connects NBD1 and NBD2 of EccC5 and is responsible for keeping NBD1 in an inhibited state. Notably, the ESX-5 substrate EsxN, predicted to bind to NBD3 on EccC5, showed a distinct secretion profile. These results indicate that linker 2 is involved in species-specific substrate recognition and might therefore be an additional substrate recognition site of EccC5.  相似文献   

16.
Mycobacterial genomes contain two unique gene families, the so-called PE and PPE gene families, which are highly expanded in the pathogenic members of this genus. Here we report that one of the PPE proteins, i.e. PPE41, is secreted by pathogenic mycobacteria, both in culture and in infected macrophages. As PPE41 lacks a signal sequence a dedicated secretion system must be involved. A single gene was identified in Mycobacterium marinum that showed strongly reduced PPE41 secretion. This gene was located in a gene cluster whose predicted proteins encode components of an ESAT-6-like secretion system. This cluster, designated ESX-5, is conserved in various pathogenic mycobacteria, but not in the saprophytic species Mycobacterium smegmatis. Therefore, different regions of this cluster were introduced in M. smegmatis. Only introduction of the complete ESX-5 locus resulted in efficient secretion of heterologously expressed PPE41. This PPE secretion system is also involved in the virulence of pathogenic mycobacteria, as the ESX-5 mutant of M. marinum was affected in spreading to uninfected macrophages.  相似文献   

17.
The PE and PPE protein family are unique to mycobacteria. Though the complete genome sequences for over 500 M. tuberculosis strains and mycobacterial species are available, few PE and PPE proteins have been structurally and functionally characterized. We have therefore used bioinformatics tools to characterize the structure and function of these proteins. We selected representative members of the PE and PPE protein family by phylogeny analysis and using structure-based sequence annotation identified ten well-characterized protein domains of known function. Some of these domains were observed to be common to all mycobacterial species and some were species specific.  相似文献   

18.
In Gram-negative bacterial pathogens, specialized chaperones bind to secreted effector proteins and maintain them in a partially unfolded form competent for translocation by type III secretion systems/injectisomes. How diverse sets of effector-chaperone complexes are recognized by injectisomes is unclear. Here we describe a new mechanism of effector-chaperone recognition by the Chlamydia injectisome, a unique and ancestral line of these evolutionarily conserved secretion systems. By yeast two-hybrid analysis we identified networks of Chlamydia-specific proteins that interacted with the basal structure of the injectisome, including two hubs of protein-protein interactions that linked known secreted effector proteins to CdsQ, the putative cytoplasmic C-ring component of the secretion apparatus. One of these protein-interaction hubs is defined by Ct260/Mcsc (Multiple cargo secretion chaperone). Mcsc binds to and stabilizes at least two secreted hydrophobic proteins, Cap1 and Ct618, that localize to the membrane of the pathogenic vacuole (“inclusion”). The resulting complexes bind to CdsQ, suggesting that in Chlamydia, the C-ring of the injectisome mediates the recognition of a subset of inclusion membrane proteins in complex with their chaperone. The selective recognition of inclusion membrane proteins by chaperones may provide a mechanism to co-ordinate the translocation of subsets of inclusion membrane proteins at different stages in infection.  相似文献   

19.

Background

Many of the PE/PPE proteins are either surface localized or secreted outside and are thought to be a source of antigenic variation in the host. The exact role of these proteins are still elusive. We previously reported that the PPE41 protein induces high B cell response in TB patients. The PE/PPE genes are not randomly distributed in the genome but are organized as operons and the operon containing PE25 and PPE41 genes co-transcribe and their products interact with each other.

Methodology/Principal Finding

We now describe the antigenic properties of the PE25, PPE41 and PE25/PPE41 protein complex coded by a single operon. The PPE41 and PE25/PPE41 protein complex induces significant (p<0.0001) B cell response in sera derived from TB patients and in mouse model as compared to the PE25 protein. Further, mice immunized with the PE25/PPE41 complex and PPE41 proteins showed significant (p<0.00001) proliferation of splenocyte as compared to the mice immunized with the PE25 protein and saline. Flow cytometric analysis showed 15–22% enhancement of CD8+ and CD4+ T cell populations when immunized with the PPE41 or PE25/PPE41 complex as compared to a marginal increase (8–10%) in the mice immunized with the PE25 protein. The PPE41 and PE25/PPE41 complex can also induce higher levels of IFN-γ, TNF-α and IL-2 cytokines.

Conclusion

While this study documents the differential immunological response to the complex of PE and PPE vis-à-vis the individual proteins, it also highlights their potential as a candidate vaccine against tuberculosis.  相似文献   

20.
Mycobacteria use specialized type VII (ESX) secretion systems to export proteins across their complex cell walls. Mycobacterium tuberculosis encodes five nonredundant ESX secretion systems, with ESX-1 being particularly important to disease progression. All ESX loci encode extracellular membrane-bound proteases called mycosins (MycP) that are essential to secretion and have been shown to be involved in processing of type VII-exported proteins. Here, we report the first x-ray crystallographic structure of MycP1(24–407) to 1.86 Å, defining a subtilisin-like fold with a unique N-terminal extension previously proposed to function as a propeptide for regulation of enzyme activity. The structure reveals that this N-terminal extension shows no structural similarity to previously characterized protease propeptides and instead wraps intimately around the catalytic domain where, tethered by a disulfide bond, it forms additional interactions with a unique extended loop that protrudes from the catalytic core. We also show MycP1 cleaves the ESX-1 secreted protein EspB from both M. tuberculosis and Mycobacterium smegmatis at a homologous cut site in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号