首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asparagus virus 1 (AV‐1) infects Asparagus officinalis L. (Asparagaceae) in the field worldwide. However, various wild relatives of A. officinalis are resistant to AV‐1. Here we study the behavior of the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), on 19 AV‐1‐resistant wild relatives of A. officinalis. We focus on behavior that is associated with regular cell penetration, relevant for inoculation of AV‐1, and sieve element penetration to check for vector resistance and its potential influence on AV‐1 transmission. Parameters, relevant for the transmission of non‐persistent viruses and host plant acceptance, were obtained by the electrical penetration graph technique. Furthermore, phylloclade architecture of A. officinalis and its wild relatives was examined to study its influence on aphid behavior. Behavior of M. persicae displays many cell penetrations and long ingestion periods on A. officinalis, compared to the generally shorter cell penetrations (reduced potential for virus transmission) and reduced or no ingestion (phloem‐located aphid resistance) on wild relatives. Because effects on aphid behavior are not consistent throughout the group of the tested wild relatives of A. officinalis, with some wild relatives being susceptible to M. persicae, a common genetic background for AV‐1 and aphid resistance appears to be unlikely. However, the reduced potential of virus transmission as well as aphid resistance shown by some wild relatives may be useful for future breeding programs.  相似文献   

2.
Fusarium oxysporum is one of the major pathogens causing root and crown rot in asparagus. Breeding of cultivars resistant to F. oxysporum would be the most efficient strategy for pathogen control. In this study, a bioassay was developed for screening seedling resistance. The non‐destructive bioassay comprises inoculation with a highly aggressive F. oxysporum isolate, incubation in a climate chamber and quantification of disease symptoms by a digital image analysing system and a PTA‐ELISA. This bioassay is simple to implement and demonstrated high reproducibility. Subsequently, it was used to determine the resistance behaviour of 16 asparagus genotypes to F. oxysporum. The asparagus cultivars revealed different levels of susceptibility, whereas the wild relative A. densiflorus was confirmed to be resistant.  相似文献   

3.
The genus Asparagus includes a group of wild species that are closely related to the cultivated Asparagus officinalis (2n = 2× = 20). The narrow genetic background present in the asparagus cultivars shows the importance of asparagus landraces and the wild related species. The study of both genetic resources becomes necessary to facilitate their effective use in the breeding programmes. ‘Morado de Huetor’ (MH) and ‘Violetto d’Albenga’ (VA) are tetraploid asparagus landraces (2n = 4× = 40) cultivated in Spain and Italy, respectively, and whose origin remains unknown. To discover the origin of these landraces, a phylogenetic study was conducted based on restriction fragment length polymorphism (RFLP) of nuclear ribosomal DNA (nrDNA). The sequence of the two internal transcribed spacers (ITS) flanking the nrDNA5.8S gene (ITS1‐5.8S‐ITS2) were analysed for RFLP in 11 populations including both landraces (MH and VA), A. officinalis (wild and cultivated) and a group of closely related wild species (Asparagus maritimus, Asparagus prostratus, Asparagus pseudoscaber and Asparagus tenuifolius) with a European distribution. Restriction fragment patterns of both cultivated asparagus (2×) and two populations of A. maritimus (6×) from the Adriatic Sea area were present in the MH landrace. However, VA showed a similar pattern to A. officinalis. This study revealed that MH seems to be a hybrid between A. officinalis and A. maritimus that may have occurred in the Adriatic Sea region where hybridisations between cultivated diploid and wild species may have taken place. The origin of another tetraploid landrace (VA) might have had a similar origin but followed a different evolutionary path. Therefore, these landraces constitute a valuable genetic resource that could be used to enlarge the genetic background of modern cultivars. The ploidy levels of the populations employed in this study were analysed and levels not described previously were detected: A. maritimus (12×), A. tenuifolius (6×) and A. pseudoscaber (2×).  相似文献   

4.
5.
6.
Asparagus (Asparagus officinalis L) is an economically important crop, rich in nutrients, and is also conducive to solving ecological and environmental problems. Plants may acquire benefits from root-associated endophytic bacteria. However, the composition of the endophytic bacterial community associated with the roots of asparagus is poorly elucidated. In this study, the nine root samples of asparagus from three different varieties including Asparagus officinalis var. Grande (GLD), A. officinalis var. Jinglvlu3 (JL3) and A. officinalis var. Jingzilu2 (JZL) were investigated by high-throughput sequencing technology of the 16S rDNA V5-V7 hypervariable region of endophytic bacteria. A total of 16 phyla, 29 classes, 90 orders, 171 families, and 312 genera were identified. Endophytic bacteria diversity and bacteria structure was different among the three varieties and was influenced by rhizosphere soil properties and varieties. In the GLD variety, the main phyla were Proteobacteria, Actinobacteria, and Firmicutes. The main phylum in JL3 and JZL varieties was Proteobacteria. The observations showed that GLD had the highest diversity of endophytes as indicated by the Shannon index (GLD > JZL > JL3). The order of the endophytes richness was GLD > JL3 > JZL. The PCA and PCoA analysis revealed the microbial communities were different between three different asparagus varieties, and the microbial composition of GLD and JZL was more similar. This report provides an important reference for the study of endophytic microorganisms of asparagus. Supplementary informationThe online version contains supplementary material available at (10.1007/s12088-021-00926-6) contains supplementary material, which is available to authorized users.  相似文献   

7.
Three tetraploid somatic hybrid lines produced by protoplast fusion between a dihaploid potato, Solanum tuberosum, cultivar BF15 and the wild potato species Solanum berthaultii were evaluated here for their response to different soil‐borne pathogens, that is Fusarium solani, Pythium aphanidermatum and Rhizoctonia solani as well as to infection by potato virus Y (PVY). Both hybrid and BF15 plants grown in vitro were inoculated with the tested pathogen strains, that is R. solani, P. aphanidermatum, or F. solani. The growth level and disease severity index of these plants were compared to the susceptible commercial cultivar Spunta. A better growth of inoculated hybrid plants and restricted disease symptoms were observed in comparison with the commercial plants. Under glasshouse conditions and after inoculation with R. solani and P. aphanidermatum, improved resistance of the hybrid plants to these pathogens was confirmed. Indeed, these plants showed no significant damage following inoculation and a better development in R. solani‐infected plants. The susceptibility of the hybrid tubers to R. solani, P. aphanidermatum, and to F. solani infection was also determined. A significant reduction of tissue colonisation was observed in all the hybrid lines compared to the cultivated cultivars. The STBc and STBd hybrids also showed improved resistance to the PVY ordinary strain (PVYo) under glasshouse conditions.  相似文献   

8.
Crop plant domestication can change plant resistance to herbivores leading to differences in pest pressure experienced by crop plants and their wild relatives. To compare resistance to herbivores between domesticated and wild fruit trees, we quantified direct resistance and indirect resistance to a pest insect, the florivorous apple blossom weevil Anthonomus pomorum (Coleoptera: Curculionidae), for the cultivated apple Malus domestica and two wild apple species, the European crab apple M. sylvestris and the exotic M. kirghisorum. We measured weevil infestation and performance (weight, sex ratio), and weevil parasitism by parasitoid wasps for different cultivars of M. domestica and for the two wild apple species. To explain weevil and parasitoid responses to different apple species, we quantified tree characteristics including nitrogen content, size of flower buds, bark roughness, tree size, tree phenology and tree position. We found significant differences in susceptibility to weevil infestation between apple species, with lowest infestation (highest apple resistance) in M. domestica and highest infestation in M. kirghisorum. The suitability of apple species also varied significantly: weevils emerging from M. sylvestris were significantly lighter than those from M. kirghisorum. Parasitism of A. pomorum by different parasitoid species was significantly higher in M. sylvestris than in M. domestica. Infestation, weevil weight and parasitism were positively related to tree characteristics: infestation to bud nitrogen content and bark roughness, weevil size to nitrogen content and bud size, and parasitism to tree height and bud density. Our study revealed marked differences between apple species in susceptibility and suitability for the pest herbivore, but also for antagonistic parasitoids. Whereas direct resistance appeared to be higher in cultivated apple, indirect resistance via parasitoids was apparently higher in wild apple trees. Our findings suggest that wild and cultivated apple trees possess different resistance traits that may be combined to optimize resistance in commercial apple cultivars.  相似文献   

9.
Cultivated asparagus (Asparagus officinalis L.) is an economically important plant worldwide. “Morado de Huetor” is a Spanish autochthonous landrace characterized by their longevity, organoleptic characteristics, differential biocompound content and high heterozygosity, resulting in heterogeneous plantations with limited productivity. Consequently, this landrace suffers high risk of extinction due the lack of productivity. The preservation of the genetic pool of asparagus requires the development of a reliable micropropagation method. A new, rapid and efficient method of micropropagation for asparagus using rhizome bud explants has been developed. The rate of disinfection reached 90 %, and the system for shoot development and rooting on Asparagus Rhizome Bud Medium took place in one step. Recovery of the full plantlets ranged between 65 and 90 %. The plantlets were ready to be transplanted by 8 weeks, with a successful acclimatization of 80 % in average. The micropropagated plants were normal in phenotype, and the genetic stability was verified using molecular markers expressed sequence tags–microsatellites or simple sequence repeats and Flow Cytometry and certified as true-to-type. Applying this method, an in vitro breeder collection of “Morado de Huetor” landrace, A. officinalis, wild asparagus relatives and hybrid progenies has been established.  相似文献   

10.
The genus Asparagus consists of 100–300 species of both dioecious and hermaphrodite plants. Since there are diploid, tetraploid, and hexaploid plants in this genus, RFLP (restriction fragment length polymorphism) analysis of chloroplast DNA (ctDNA) is suitable for examining the phylogenetic relationships. We have constructed a physical map of the ctDNA of garden asparagus (A. officinalis L. cv Mary Washington 500 W) using five restriction endonucleases, namely, BamHI, PstI, SalI, HindIII, and XhoI. Asparagus ctDNA was digested with restriction enzymes and cloned into plasmid and phage vectors, and a clone bank was constructed that covered 70% of the genome. A physical map was constructed by Southern hybridization of total DNA from asparagus with homologous and heterologous probes. The asparagus ctDNA was about 155 kb long and it contained two inverted repeats (23kb each) separated by a large single-copy region (90kb) and a small single-copy region (19kb). Fifteen genes, encoding photosynthesis-related proteins, rDNAs, and tRNAs, were localized on the physical map of asparagus ctDNA. Comparing the length and the gene order of asparagus ctDNA with that of other plants, we found that asparagus ctDNA was similar to tobacco ctDNA but different from rice ctDNA. The restriction patterns of the ctDNAs from several varieties of A. officinalis and three species of Asparagus were analyzed. The restriction patterns of the varieties of A. officinalis were very similar, but polymorphisms were detected among the three species of Asparagus.  相似文献   

11.
Asparagus kiusianus is a disease-resistant dioecious plant species and a wild relative of garden asparagus (Asparagus officinalis). To enhance A. kiusianus genomic resources, advance plant science, and facilitate asparagus breeding, we determined the genome sequences of the male and female lines of A. kiusianus. Genome sequence reads obtained with a linked-read technology were assembled into four haplotype-phased contig sequences (∼1.6 Gb each) for the male and female lines. The contig sequences were aligned onto the chromosome sequences of garden asparagus to construct pseudomolecule sequences. Approximately 55,000 potential protein-encoding genes were predicted in each genome assembly, and ∼70% of the genome sequence was annotated as repetitive. Comparative analysis of the genomes of the two species revealed structural and sequence variants between the two species as well as between the male and female lines of each species. Genes with high sequence similarity with the male-specific sex determinant gene in A. officinalis, MSE1/AoMYB35/AspTDF1, were presented in the genomes of the male line but absent from the female genome assemblies. Overall, the genome sequence assemblies, gene sequences, and structural and sequence variants determined in this study will reveal the genetic mechanisms underlying sexual differentiation in plants, and will accelerate disease-resistance breeding in garden asparagus.  相似文献   

12.
The cytokinin producing capacity of asparagus (Asparagus officinalis L.) shoot apex was examined by means of shoot apex culture in vitro, where adventitious roots were never formed. The cultured shoot apices continued to diffuse a small but constant amount of cytokinin into the medium throughout five passages of subculture. The cytokinin content in the apices at the end of the subculture was not different from that at the beginning of the subculture. These results indicate a production of cytokinin by the apices. However, the finding is not in conflict with the hypothesis that the root tip is the major source of cytokinin supply, because the root tip of asparagus produced more cytokinin than the shoot apex and the decline of shoot growth observed during the subculture was partially restored by an application of zeatin into the medium.  相似文献   

13.
Selection for plant traits important for agriculture can come at a high cost to plant defenses. While selecting for increased growth rate and yield, domestication and subsequent breeding may lead to weakened defenses and greater susceptibility of plants to herbivores. We tested whether expression of defense genes differed among maize, Zea mays ssp. mays L. (Poaceae), and its wild relatives Zea mays ssp. parviglumis Iltis & Doebley and Zea diploperennis Iltis et al. We used two populations of Z. mays ssp. parviglumis: one expected to express high levels of an herbivore resistance gene, wound‐inducible protein (wip1), and another expected to have low expression of wip1. To test whether maize and wild Zea differed in induction of defenses against Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), we quantified expression of several genes involved in plant defense: wip1, maize protease inhibitor (mpi), pathogenesis‐related protein (PR‐1), and chitinase. Moreover, we compared growth, development, and survival of caterpillars on maize and wild Zea plants. We found that maize expressed low levels of all but one of the genes when attacked by caterpillars, whereas the wild relatives of maize expressed induced defense genes at high levels. Expression of wip1, in particular, was much greater in the Z. mays ssp. parviglumis population that we expected to naturally express high levels of wip1, with expression levels 29‐fold higher than in herbivore‐free plants. Elevated expression of defenses in wild plants was correlated with higher resistance to caterpillars. Larvae were 15–20% smaller on wild Zea compared with maize, developed 20% slower, and only 22% of them survived to pupation on Z. mays ssp. parviglumis with high levels of wip1. Our results suggest that domestication has inadvertently reduced the resistance of maize, and it is likely that expression of wip1 and other genes associated with defenses play an important role in this reduction in resistance.  相似文献   

14.
An effective method for consistent regeneration of transgenic asparagus (Asparagus officinalis L) plants from electroporated protoplasts is described. Transgenic plants containing β-glucuronidase (GUS) and neomycin-phosphotransferase (NPT II) genes were obtained by electroporating callus-derived protoplasts of Asparagus officinalis L. Embryogenic callus tissue and plants from four kanamycin resistant lines expressed P-glucuronidase activity, as revealed by histological staining. The amplification of genomic DNA by polymerase chain reaction revealed the presence of both GUS and NPT II genes in transformed callus tissue and plants. Southern hybridization confirmed the integration of these genes into the asparagus genome.  相似文献   

15.
 In a previous study we constructed a physical map of the chloroplast DNA (ctDNA) of garden asparagus (Asparagus officinalis L. cv ‘Mary Washington 500W’; Lee et al. 1996). In the present study we have constructed and compared HindIII and XhoI restriction maps of the ctDNAs of eight species of Asparagus: namely, A. officinalis, A. schoberioides, A. cochinchinensis, A. plumosus, A. falcatus, A. sprengeri, A. virgatus and A. asparagoides. The ctDNA of A. officinalis has 32 and 23 sites that are recognized by HindIII and XhoI, respectively. Taking the physical map of the ctDNA of A. officinalis as a standard, we found that the ctDNAs of A. falcatus, A. sprengeri, and A. asparagoides each had one additional HindIII site and lacked one XhoI site. We also detected two relatively large deletions of nucleotides in the ctDNA from A. cochinchinensis by sequencing analysis. Both of these deletions were located in a non-coding region between the ndhC and trnV genes and were 95 bp and 347 bp in length, respectively. The regions around the deletions exhibited strong homology, and short direct-repeat sequences were detected at the borders of the deletions, an indication that these deletions were the result of intramolecular recombination mediated by the direct repeats. Received: 16 June 1997 / Accepted: 17 July 1997  相似文献   

16.
Asparagus officinalis is a health-care vegetable with homology value of medicine and food. The quality of A. officinalis is greatly different from various cultivars. It is essential to reveal the relationship between the variety and quality. This study investigated six nutritional compositions in ten A. officinalis cultivars, including amino acid, mineral substance, carbohydrate, vitamin C, protein and total sugar. Five chemometrics methods were further employed to evaluate their quality. The results consistently showed that ten varieties were divided into three grades as nutritional composition differences. HuaMiaoF1, JinGuan and FeiCuiMingZhu were grouped into cluster3 with the best quality, and Atlas and Jersey Giant were grouped into cluster1 with the lowest quality. Therefore, HuaMiaoF1, JinGuan and FeiCuiMingZhu can be suggested as good raw materials for medicine, food and health-care products industries. Meanwhile, the comprehensive application of five chemometrics methods was confirmed as a reliable methodology for quality evaluation of A. officinalis.  相似文献   

17.
Asparagus officinalis plants with severe fasciation of some spears were observed in southern Bohemia between 1998 and 2007. Nucleic acids extracted from these and asymptomatic plants were assayed with nested polymerase chain reaction (PCR) using the phytoplasma‐specific universal ribosomal primers P1/P7 and R16F2n/R2. The restriction profiles obtained from digestion of the PCR products with five endonucleases (AluI, HhaI, KpnI, MseI and RsaI) were identical in all phytoplasmas infecting asparagus in the Czech Republic and indistinguishable from those of phytoplasmas in the aster yellows group (subgroup 16SrI‐B). Sequence analysis of 1754 bp of the ribosomal operon indicated that the closest related phytoplasmas were those associated with epilobium phyllody and onion yellows. This is the first report of the natural occurrence of ‘Candidatus Phytoplasma asteris’ in A. officinalis.  相似文献   

18.
 An integrated genetic map of the dioecious species Asparagus officinalis L. has been constructed on the basis of RFLP, RAPD, AFLP and isoenzyme markers. The segregation analysis of the polymorphic markers was carried out on the progeny of five different crosses between male and female doubled-haploid clones generated by anther culture. A total of 274 markers have been organized to ten linkage groups spanning 721.4 cM. Since the haploid chromosome number of asparagus is ten, the established linkage groups probably represent the different chromosomes; however, the only group associated with a specific chromosome is the one which includes sex, whose determinant genes have been located on chromosome 5. A total of 33 molecular markers (13 RFLPs, 18 AFLPs, 2 RAPDs and 1 isoenzyme) have been located on this chromosome. The closest marker to the sex determinant is the AFLP SV marker at 3.2 cM. Received: 26 March 1998 / Accepted: 30 April 1998  相似文献   

19.
An asparagus field trial was established with clonal plants to determine the long-term effects of asparagus virus 2 (AV2) infection on spear production. Yield data, analysed by ANOVA, showed that AV2 infection caused significant (P < 0.05) decreases in spear yield which became more pronounced as the trial progressed. Mean marketable spear yields were reduced by 14%, 28%, 20%, 48% and 57% and reject spear yields were increased by 93%, 105%, 207%, 352% and 167%, during harvest years 1–5 respectively. Marketable spear yields from AV2–free plants increased annually to yr 5, but for AV2–infected plants, yields increased to yr 3 and decreased annually thereafter. Spears from AV2–infected plants were thinner than those from AV2–free plants, resulting in more reject thin spears by 109%, 88%, 220%, 499% and 216% during harvest yr 1–5, respectively. Further, data collected in yr 4 and 5 showed that AV2 infection had caused a 31 % reduction in mean spear diameter and reductions of 27% and 22% respectively, in diameter and height of fern stalks. Clearly, plants with smaller fern stalks were less able to accumulate carbohydrate reserves and therefore produced fewer, smaller spears and fern stalks the following spring. This may result in annual cycles of diminishing productivity in which the size and number of spears and fern stalks decrease with each successive year. The type and timespan of symptoms caused by AV2 infection in this trial are similar to those reported for asparagus decline syndrome and therefore it is likely that AV2 infection is a factor contributing to asparagus decline.  相似文献   

20.
MADS box genes are implicated in different steps of plant development. Some of them are expressed in vegetative organs. Most of them, however, are expressed in flower tissues and are involved in different phases of flower development. Here we describe the isolation and characterization of an Asparagus officinalis MADS box gene, AOM1. The deduced AOM1 protein shows the highest degree of similarity with FBP2 of Petunia hybrida and AGL9 (SEP3), AGL2 (SEP1) and AGL4 (SEP2) of Arabidopsis thaliana. In situ hybridization analyses, however, show that the expression profile of AOM1 is different from that of these genes: AOM1 is expressed not only in flower organs but also in inflorescence and flower meristems. These data indicate a possible function of AOM1 during flower development as well as in earlier stages of the flowering process. Asparagus officinalis is a dioecious species which bears male and female flowers on different individuals. AOM1, which is expressed very early during the process of flowering and has a similar expression profile in male and female flowers, does not seems to be involved in asparagus sex differentiation. Received: 3 July 2000 / Revision accepted: 4 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号