首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
All bacteria are surrounded by at least one bilayer membrane mainly composed of phospholipids (PLs). Biosynthesis of the most abundant PLs phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and cardiolipin (CL) is well understood in model bacteria such as Escherichia coli. It recently emerged, however, that the diversity of bacterial membrane lipids is huge and that not yet explored biosynthesis pathways exist, even for the common PLs. A good example is the plant pathogen Xanthomonas campestris pv. campestris. It contains PE, PG and CL as major lipids and small amounts of the Nmethylated PE derivatives monomethyl PE and phosphatidylcholine (PC = trimethylated PE). Xanthomonas campestris uses a repertoire of canonical and non‐canonical enzymes for the synthesis of its membrane lipids. In this minireview, we briefly recapitulate standard pathways and integrate three recently discovered pathways into the overall picture of bacterial membrane biosynthesis.  相似文献   

2.
3.
Aims: To determine effects of inner membrane lipid composition on Bacillus subtilis sporulation and spore properties. Methods and Results: The absence of genes encoding lipid biosynthetic enzymes had no effect on B. subtilis sporulation, although the expected lipids were absent from spores’ inner membrane. The rate of spore germination with nutrients was decreased c. 50% with mutants that lacked the major cardiolipin (CL) synthase and another enzyme for synthesis of a major phospholipid. Spores lacking the minor CL synthase or an enzyme essential for glycolipid synthesis exhibited 50–150% increases in rates of dodecylamine germination, while spores lacking enzymes for phosphatidylethanolamine (PE), phosphatidylserine (PS) and lysylphosphatidylglycerol (l‐PG) synthesis exhibited a 30–50% decrease. Spore sensitivity to H2O2 and tert‐butylhydroperoxide was increased 30–60% in the absence of the major CL synthase, but these spores’ sensitivity to NaOCl or Oxone? was unaffected. Spores of lipid synthesis mutants were less resistant to wet heat, with spores lacking enzymes for PE, PS or l‐PG synthesis exhibiting a two to threefold decrease and spores of other strains exhibiting a four to 10‐fold decrease. The decrease in spore wet heat resistance correlated with an increase in core water content. Conclusions: Changing the lipid composition of the B. subtilis inner membrane did not affect sporulation, although modest effects on spore germination and wet heat and oxidizing agent sensitivity were observed, especially when multiple lipids were absent. The increases in rates of dodecylamine germination were likely due to increased ability of this compound to interact with the spore’s inner membrane in the absence of some CL and glycolipids. The effects on spore wet heat sensitivity are likely indirect, because they were correlated with changes in core water content. Significance and Impact of the Study: The results of this study provide insight into roles of inner membrane lipids in spore properties.  相似文献   

4.
Lipid metabolism in Trypanosoma brucei, the causative agent of African sleeping sickness, differs from its human host in several fundamental ways. This has lead to the validation of a plethora of novel drug targets, giving hope of novel chemical intervention against this neglected disease. Cytidine diphosphate diacylglycerol (CDP‐DAG) is a central lipid intermediate for several pathways in both prokaryotes and eukaryotes, being produced by CDP‐DAG synthase (CDS). However, nothing is known about the single T. brucei CDS gene (Tb927.7.220/EC 2.7.7.41) or its activity. In this study we show TbCDS is functional by complementation of a non‐viable yeast CDS null strain and that it is essential in the bloodstream form of the parasite via a conditional knockout. The TbCDS conditional knockout showed morphological changes including a cell‐cycle arrest due in part to kinetoplast segregation defects. Biochemical phenotyping of TbCDS conditional knockout showed drastically altered lipid metabolism where reducing levels of phosphatidylinositol detrimentally impacted on glycoylphosphatidylinositol biosynthesis. These studies also suggest that phosphatidylglycerol synthesized via the phosphatidylglycerol‐phosphate synthase is not synthesized from CDP‐DAG, as was previously thought. TbCDS was shown to localized the ER and Golgi, probably to provide CDP‐DAG for the phosphatidylinositol synthases.  相似文献   

5.
Cardiolipin (CL) is an anionic membrane lipid present in bacteria, plants, and animals, but absent from archaea. It is generally thought that bacteria use an enzyme belonging to the phospholipase D superfamily as cardiolipin synthase (Cls) catalyzing a reversible phosphatidyl group transfer from one phosphatidylglycerol (PG) molecule to another PG to form CL and glycerol. In contrast, in eukaryotes a Cls of the CDP-alcohol phosphatidyltransferase superfamily uses cytidine diphosphate-diacylglycerol (CDP-DAG) as the donor of the phosphatidyl group, which is transferred to a molecule of PG to form CL. Searching the genome of the actinomycete Streptomyces coelicolor A3(2) we identified a gene coding for a putative Cls of the CDP-alcohol phosphatidyltransferase superfamily (Sco1389). Here we show that expression of Sco1389 in a CL-deficient Rhizobium etli mutant restores CL formation. In an in vitro assay Sco1389 condenses CDP-DAG with PG to form CL and therefore catalyzes the same reaction as eukaryotic cardiolipin synthases. This is the first time that a CDP-alcohol phosphatidyltransferase from bacteria is shown to be responsible for CL formation. The broad occurrence of putative orthologues of Sco1389 among the actinobacteria suggests that CL synthesis involving a eukaryotic type Cls is common in actinobacteria.  相似文献   

6.
Phosphatidylethanolamine (PE) plays important roles for the structure and function of mitochondria and other intracellular organelles. In yeast, the majority of PE is produced from phosphatidylserine (PS) by a mitochondrion-located PS decarboxylase, Psd1p. Because PS is synthesized in the endoplasmic reticulum (ER), PS is transported from the ER to mitochondria and converted to PE. After its synthesis, a portion of PE moves back to the ER. Two mitochondrial proteins located in the intermembrane space, Ups1p and Ups2p, have been shown to regulate PE metabolism by controlling the export of PE. It remains to be determined where PS is decarboxylated in mitochondria and whether decarboxylation is coupled to trafficking of PS. Here, using fluorescent PS as a substrate in an in vitro assay for Psd1p-dependent PE production in isolated mitochondria, we show that PS is transferred from the mitochondrial outer membrane to the inner membrane independently of Psd1p, Ups1p, and Ups2p and decarboxylated to PE by Psd1p in the inner membrane. Interestingly, Ups1p is required for the maintenance of Psd1p and therefore PE production. Restoration of Psd1p levels rescued PE production defects in ups1Δ mitochondria. Our data provide novel mechanistic insight into PE biogenesis in mitochondria.  相似文献   

7.
Phosphatidylethanolamine (PE) and phosphatidylserine (PS) are ubiquitously expressed and metabolically interconnected glycerophospholipids in eukaryotes and prokaryotes. In Trypanosoma brucei, PE synthesis has been shown to occur mainly via the Kennedy pathway, one of the three routes leading to PE synthesis in eukaryotes, while PS synthesis has not been studied experimentally. We now reveal the importance of T. brucei PS synthase 2 (TbPSS2) and T. brucei PS decarboxylase (TbPSD), two key enzymes involved in aminophospholipid synthesis, for trypanosome viability. By using tetracycline‐inducible down‐regulation of gene expression and in vivo and in vitro metabolic labeling, we found that TbPSS2 (i) is necessary for normal growth of procyclic trypanosomes, (ii) localizes to the endoplasmic reticulum and (iii) represents the unique route for PS formation in T. brucei. In addition, we identified TbPSD as type I PS decarboxylase in the mitochondrion and found that it is processed proteolytically at a WGSS cleavage site into a heterodimer. Down‐regulation of TbPSD expression affected mitochondrial integrity in both procyclic and bloodstream form trypanosomes, decreased ATP production via oxidative phosphorylation in procyclic form and affected parasite growth.  相似文献   

8.
In the yeast Saccharomyces cerevisiae three pathways lead to the formation of phosphatidylethanolamine (PE), namely decarboxylation of phosphatidylserine (PS) (i) by Psd1p in mitochondria, and (ii) by Psd2p in a Golgi/vacuolar compartment; and (iii) synthesis via CDP–ethanolamine pathway in the endoplasmic reticulum. To determine the contribution of these pathways to the supply of PE to peroxisomes, we subjected mutants bearing defects in the respective metabolic routes to biochemical and cell biological analysis. Despite these defects in PE formation mutants were able to grow on oleic acid indicating induction of peroxisome proliferation. Biochemical analysis revealed that PE formed through all three pathways was supplied to peroxisomes. These analyses also demonstrated that selective as well as equilibrium interorganelle flux of PE appear to be equally important for cellular homeostasis of this phospholipid. Electron microscopic inspection confirmed that defects in PE synthesis still allowed formation of peroxisomes, although these organelles from strains lacking PSD1 were significantly smaller than wild type. The fact that peroxisomes were always found in close vicinity to mitochondria, ER and lipid particles supported the view that membrane contact may play a role in lipid traffic between these organelles.  相似文献   

9.
Modified fatty acids (mFA) have diverse uses; for example, cyclopropane fatty acids (CPA) are feedstocks for producing coatings, lubricants, plastics and cosmetics. The expression of mFA‐producing enzymes in crop and model plants generally results in lower levels of mFA accumulation than in their natural‐occurring source plants. Thus, to further our understanding of metabolic bottlenecks that limit mFA accumulation, we generated transgenic Camelina sativa lines co‐expressing Escherichia coli cyclopropane synthase (EcCPS) and Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT). In contrast to transgenic CPA‐accumulating Arabidopsis, CPA accumulation in camelina caused only minor changes in seed weight, germination rate, oil accumulation and seedling development. CPA accumulated to much higher levels in membrane than storage lipids, comprising more than 60% of total fatty acid in both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) versus 26% in diacylglycerol (DAG) and 12% in triacylglycerol (TAG) indicating bottlenecks in the transfer of CPA from PC to DAG and from DAG to TAG. Upon co‐expression of SfLPAT with EcCPS, di‐CPA‐PC increased by ~50% relative to lines expressing EcCPS alone with the di‐CPA‐PC primarily observed in the embryonic axis and mono‐CPA‐PC primarily in cotyledon tissue. EcCPS‐SfLPAT lines revealed a redistribution of CPA from the sn‐1 to sn‐2 positions within PC and PE that was associated with a doubling of CPA accumulation in both DAG and TAG. The identification of metabolic bottlenecks in acyl transfer between site of synthesis (phospholipids) and deposition in storage oils (TAGs) lays the foundation for the optimizing CPA accumulation through directed engineering of oil synthesis in target crops.  相似文献   

10.
The activity of phospholipase C/sphingomyelinase HR2 (PlcHR2) from Pseudomonas aeruginosa was characterized on a variety of substrates. The enzyme was assayed on liposomes (large unilamellar vesicles) composed of PC:SM:Ch:X (1:1:1:1; mol ratio) where X could be PE, PS, PG, or CL. Activity was measured directly as disappearance of substrate after TLC lipid separation. Previous studies had suggested that PlcHR2 was active only on PC or SM. However we found that, of the various phospholipids tested, only PS was not a substrate for PlcHR2. All others were degraded, in an order of preference PC > SM > CL > PE > PG. PlcHR2 activity was sensitive to the overall lipid composition of the bilayer, including non-substrate lipids.  相似文献   

11.
Phospholipid biosynthetic pathways play crucial roles in the virulence of several pathogens; however, little is known about how phospholipid synthesis affects pathogenesis in fungi such as Candida albicans. A C. albicans phosphatidylserine (PS) synthase mutant, cho1Δ/Δ, lacks PS, has decreased phosphatidylethanolamine (PE), and is avirulent in a mouse model of systemic candidiasis. The cho1Δ/Δ mutant exhibits defects in cell wall integrity, mitochondrial function, filamentous growth, and is auxotrophic for ethanolamine. PS is a precursor for de novo PE biosynthesis. A psd1Δ/Δ psd2Δ/Δ double mutant, which lacks the PS decarboxylase enzymes that convert PS to PE in the de novo pathway, has diminished PE levels like those of the cho1Δ/Δ mutant. The psd1Δ/Δ psd2Δ/Δ mutant exhibits phenotypes similar to those of the cho1Δ/Δ mutant; however, it is slightly more virulent and has less of a cell wall defect. The virulence losses exhibited by the cho1Δ/Δ and psd1Δ/Δ psd2Δ/Δ mutants appear to be related to their cell wall defects which are due to loss of de novo PE biosynthesis, but are exacerbated by loss of PS itself. Cho1p is conserved in fungi, but not mammals, so fungal PS synthase is a potential novel antifungal drug target.  相似文献   

12.
In many bacteria, including Staphylococcus aureus, progression from the logarithmic to the stationary phase is accompanied by conversion of most of bacterial membrane phosphatidylglycerol (PG) to cardiolipin (CL). Phagocytosis of S. aureus by human neutrophils also induces the conversion of most bacterial PG to CL. The genome of all sequenced strains of S. aureus contains two open reading frames (ORFs) predicting proteins encoded with ~30% identity to the principal CL synthase (cls) of Escherichia coli. To test whether these ORFs (cls1 and cls2) encode cardiolipin synthases and contribute to CL accumulation in S. aureus, we expressed these proteins in a cls strain of E. coli and created isogenic single and double mutants in S. aureus. The expression of either Cls1 or Cls2 in CL-deficient E. coli resulted in CL accumulation in the stationary phase. S. aureus with deletion of both cls1 and cls2 showed no detectable CL accumulation in the stationary phase or after phagocytosis by neutrophils. CL accumulation in the stationary phase was due almost solely to Cls2, whereas both Cls1 and Cls2 contributed to CL accumulation following phagocytosis by neutrophils. Differences in the relative contributions of Cls1 and Cls2 to CL accumulation under different triggering conditions suggest differences in the role and regulation of these two enzymes.  相似文献   

13.
In this study, we examined the contribution of the four different pathways of phosphatidylethanolamine (PE) synthesis in the yeast Saccharomyces cerevisiae to the supply of this phospholipid to the plasma membrane. These pathways of PE formation are decarboxylation of phosphatidylserine (PS) by (i) phosphatidylserine decarboxylase 1 (Psd1p) in mitochondria and (ii) phosphatidylserine decarboxylase 2 (Psd2p) in a Golgi/vacuolar compartment, (iii) incorporation of exogenous ethanolamine and ethanolamine phosphate derived from sphingolipid catabolism via the CDP-ethanolamine pathway in the endoplasmic reticulum (ER), and (iv) synthesis of PE through acylation of lyso-PE catalyzed by the acyl-CoA-dependent acyltransferase Ale1p in the mitochondria associated endoplasmic reticulum membrane (MAM). Deletion of PSD1 and/or PSD2 led to depletion of total cellular and plasma membrane PE level, whereas mutation in the other pathways had practically no effect. Analysis of wild type and mutants, however, revealed that all four routes of PE synthesis contributed not only to PE formation but also to the supply of PE to the plasma membrane. Pulse-chase labeling experiments with L[3H(G)]serine and [14C]ethanolamine confirmed the latter finding. Fatty acid profiling demonstrated a rather balanced incorporation of PE species into the plasma membrane irrespective of mutations suggesting that all four pathways of PE synthesis provide at least a basic portion of “correct” PE species required for plasma membrane biogenesis. In summary, the PE level in the plasma membrane is strongly influenced by total cellular PE synthesis, but fine tuned by selective assembly mechanisms.  相似文献   

14.
The pathways of glycerophospholipid syntheses in adult Brugia pahangi and Brugia patei were examined by radioisotopic incorporation and demonstration of the enzymatic steps. Radiolabelling studies showed that l-U-14C-glycerol-3-phosphate was rapidly incorporated into glycerophospholipids of B. pahangi and B. patei, respectively, with the label distributed in phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylglycerol (PG) and cardiolipin (CL) fractions. Crude extracts of these worms were found to contain significant activities of sn-glycerol-3-phosphate acyl-transferase (EC 2.3.1.15), phosphatidic acid phosphatase (EC 3.1.3.4), choline phosphotransferase (EC 2.7.8.2), ethanolamine phosphotransferase (EC 2.7.8.1), PE methyltransferase (EC 2.1.1.17), PS decarboxylase (EC 4.1.1.65), phosphatidylglycerolphosphate synthetase (EC 2.7.8.5), phosphatidylinositol synthetase (EC 2.7.8.11), and base exchange enzymes of ethanolamine, serine and inositol. These findings suggest that filarial worms can synthesize PC by two pathways, PE by three pathways, and PI by two pathways and fabricate PS, PG and CL.  相似文献   

15.
Cells control their own hydration by accumulating solutes when they are exposed to high osmolality media and releasing solutes in response to osmotic down-shocks. Osmosensory transporters mediate solute accumulation and mechanosensitive channels mediate solute release. Escherichia coli serves as a paradigm for studies of cellular osmoregulation. Growth in media of high salinity alters the phospholipid headgroup and fatty acid compositions of bacterial cytoplasmic membranes, in many cases increasing the ratio of anionic to zwitterionic lipid. In E. coli, the proportion of cardiolipin (CL) increases as the proportion of phosphatidylethanolamine (PE) decreases when osmotic stress is imposed with an electrolyte or a non-electrolyte. Osmotic induction of the gene encoding CL synthase (cls) contributes to these changes. The proportion of phosphatidylglycerol (PG) increases at the expense of PE in cls bacteria and, in Bacillus subtilis, the genes encoding CL and PG synthases (clsA and pgsA) are both osmotically regulated. CL is concentrated at the poles of diverse bacterial cells. A FlAsH-tagged variant of osmosensory transporter ProP is also concentrated at E. coli cell poles. Polar concentration of ProP is CL-dependent whereas polar concentration of its paralogue LacY, a H+-lactose symporter, is not. The proportion of anionic lipids (CL and PG) modulates the function of ProP in vivo and in vitro. These effects suggest that the osmotic induction of CL synthesis and co-localization of ProP with CL at the cell poles adjust the osmolality range over which ProP activity is controlled by placing it in a CL-rich membrane environment. In contrast, a GFP-tagged variant of mechanosensitive channel MscL is not concentrated at the cell poles but anionic lipids bind to a specific site on each subunit of MscL and influence its function in vitro. The sub-cellular locations and lipid dependencies of other osmosensory systems are not known. Varying CL content is a key element of osmotic adaptation by bacteria but much remains to be learned about its roles in the localization and function of osmoregulatory proteins.  相似文献   

16.
Major components of polar lipids of halophilic phototrophic Ectothiorhodospira species were PG, CL, PC and PE. PA was only present in minor amounts. According to 14C-incorporation, polar lipids approximated to 75%–93% of the total lipid carbon. With increasing salinity, a strong increase in the portion of PG and a decrease in that of PE (especially in Ectothiorhodospira mobilis BN 9903) and CL (especially in E. halophila strains) were observed. Moreover, there was a significant increase in the excess negative charges of phospholipids upon increasing medium salinity. This increase was most dramatic in the slightly halophilic E. mobilis BN 9903, but quantitatively less important in both strains of E. halophila which had, however, a higher percentage of negative charges of their lipids. During salt-shift experiments, E. halophila BN 9630 responded to suddenly increased salinity by promoting the biosynthesis of PG and decreasing that of PC, CL and PE. Upon dilution stress, responses were reversed and resulted in a strong increase in PE biosynthesis. The effects of lipid charges and bilayer forming forces in stabilizing the membranes of Ectothiorhodospira species during salt stress are discussed.Abbreviations PC phosphatidylcholine - PG, PG-1, PG-2 phosphatidylglycerol - CL, CL-1, Cl-2 cardiolipin - PE phosphatidylethanol-amine - PA phosphatidic acid - NL nonpolar lipids - ori origin - TLC thin layer chromatography  相似文献   

17.
During acclimation to drought stress, the lipid composition of oat root cell membranes is altered. The level of phosphatidylethanolamine (PE), a non-bilayer forming lipid, is increased relative to the bilayer-forming lipid phosphatidylcholine (PC). These changes are believed to increase stress tolerance by increasing the flexibility of the membranes. To elucidate if de novo lipid synthesis is involved in altering membrane lipid composition, oat plants, acclimated or non-acclimated, were incubated in vivo with radioactively labelled lipid precursors. The labelling pattern indicated that de novo synthesis, at least partly, is causing the alterations. In plants, phospholipids can be synthesized by the Kennedy pathway, with addition of activated head groups to diacylglycerol (DAG) or, alternatively, via the CDP-DAG pathway, where phospahtidylserine (PS) is decarboxylated to form PE. To reveal the importance of the respective pathways during acclimation, we studied the effect of a decarboxylase inhibitor and the relative incorporation of [(3)H]-serine and [(14)C]-ethanolamine in vivo. Activities of CTP:ethanolaminephosphate cytidyltransferase (EC 2.7.7.14), phosphatidylserine decarboxylase (EC 4.1.1.65) and phosphatidylserine synthase; CDP-DAG:L-serine o-phosphatidyltransferase (EC 2.7.8.8) were measured and additionally, the presence of a PS decarboxylase (PSD1) in oat was confirmed by immunoblotting. The results suggest that PE synthesis via the Kennedy pathway is downregulated during acclimation and that synthesis by PS decarboxylation, via the CDP-DAG pathway, is increased, mainly through an increased activity of PS synthase.  相似文献   

18.
Xanthomonas campestris pv. campestris causes black rot, a serious disease of crucifers. Xanthomonads encode a siderophore biosynthesis and uptake gene cluster xss (Xanthomonas siderophore synthesis) involved in the production of a vibrioferrin‐type siderophore. However, little is known about the role of the siderophore in the iron uptake and virulence of X. campestris pv. campestris. In this study, we show that X. campestris pv. campestris produces an α‐hydroxycarboxylate‐type siderophore (named xanthoferrin), which is required for growth under low‐iron conditions and for optimum virulence. A mutation in the siderophore synthesis xssA gene causes deficiency in siderophore production and growth under low‐iron conditions. In contrast, the siderophore utilization ΔxsuA mutant is able to produce siderophore, but exhibits a defect in the utilization of the siderophore–iron complex. Our radiolabelled iron uptake studies confirm that the ΔxssA and ΔxsuA mutants exhibit defects in ferric iron (Fe3+) uptake. The ΔxssA mutant is able to utilize and transport the exogenous xanthoferrin–Fe3+ complex; in contrast, the siderophore utilization or uptake mutant ΔxsuA exhibits defects in siderophore uptake. Expression analysis of the xss operon using a chromosomal gusA fusion indicates that the xss operon is expressed during in planta growth and under low‐iron conditions. Furthermore, exogenous iron supplementation in cabbage leaves rescues the in planta growth deficiency of ΔxssA and ΔxsuA mutants. Our study reveals that the siderophore xanthoferrin is an important virulence factor of X. campestris pv. campestris which promotes in planta growth by the sequestration of Fe3+.  相似文献   

19.
In the yeast, Saccharomyces cerevisiae, the synthesis of the essential phospholipid phosphatidylethanolamine (PE) is accomplished by a network of reactions which comprises four different pathways. The enzyme contributing most to PE formation is the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) which catalyzes conversion of phosphatidylserine (PS) to PE. To study the genome wide effect of an unbalanced cellular and mitochondrial PE level and in particular the contribution of Psd1p to this depletion we performed a DNA microarray analysis with a ∆psd1 deletion mutant. This approach revealed that 54 yeast genes were significantly up-regulated in the absence of PSD1 compared to wild type. Surprisingly, marked down-regulation of genes was not observed. A number of different cellular processes in different subcellular compartments were affected in a ∆psd1 mutant. Deletion mutants bearing defects in all 54 candidate genes, respectively, were analyzed for their growth phenotype and their phospholipid profile. Only three mutants, namely ∆gpm2, ∆gph1 and ∆rsb1, were affected in one of these parameters. The possible link of these mutations to PE deficiency and PSD1 deletion is discussed.  相似文献   

20.
We describe a novel biosynthetic pathway for glycerophosphoinositides in Rhodothermus marinus in which inositol is activated by cytidine triphosphate (CTP); this is unlike all known pathways that involve activation of the lipid group instead. This work was motivated by the detection in the R. marinus genome of a gene with high similarity to CTP:L‐myo‐inositol‐1‐phosphate cytidylyltransferase, the enzyme that synthesizes cytidine diphosphate (CDP)‐inositol, a metabolite only known in the synthesis of di‐myo‐inositol phosphate. However, this solute is absent in R. marinus. The fate of radiolabelled CDP‐inositol was investigated in cell extracts to reveal that radioactive inositol was incorporated into the chloroform‐soluble fraction. Mass spectrometry showed that the major lipid product has a molecular mass of 810 Da and contains inositol phosphate and alkyl chains attached to glycerol by ether bonds. The occurrence of ether‐linked lipids is rare in bacteria and has not been described previously in R. marinus. The relevant synthase was identified by functional expression of the candidate gene in Escherichia coli. The enzyme catalyses the transfer of L‐myo‐inositol‐1‐phosphate from CDP‐inositol to dialkylether glycerol yielding dialkylether glycerophosphoinositol. Database searching showed homologous proteins in two bacterial classes, Sphingobacteria and Alphaproteobacteria. This is the first report of the involvement of CDP‐inositol in phospholipid synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号