首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Animal populations can be affected by environmental disturbances in many ways including demographic and behavioral changes. This can affect interspecies associations for regularly interacting sympatric species, like bottlenose and spotted dolphins in the Bahamas (observed since 1985 and interspecies associations analyzed since 1993). After two hurricanes in 2004 each species lost roughly 30% of their respective communities resulting in differing social structure and behavioral changes. During mixed species encounters (MSE) group sizes for spotted dolphins ( = 14.1 ± 9.2) were significantly larger than bottlenose dolphins ( = 6.0 ± 7.3; F = 11.74, df = 1, P < 0.001), however, t‐tests revealed no differences between aggressive vs. affiliative encounters. Sexual/aggressive behavior regularly seen previously was not observed posthurricanes and aggressive encounters were greatly reduced. Generally results were similar to prehurricane data including high resightings of spotted dolphins with male alliances prevalent (including new juvenile alliances seen only posthurricane), and individualized bottlenose participation with few male alliances. However temporal associations varied compared to prehurricane. Interspecies association and behavior patterns were altered and likely affected by the changes in intraspecies association patterns following the hurricanes. However both species still participated in MSE, suggesting this is an important component of their ability to coexist as sympatric species.  相似文献   

3.
Social and network analyses that incorporate information on individuals within a population enhance our knowledge of complex species. In this study, the social structure of wild bottlenose dolphins in the Shannon Estuary, Ireland, was analyzed by examining the dynamics of the whole population and then of individuals classed by sex, age, and area. One hundred and twenty‐one dolphins were identified during 522 sightings between 2012 and 2015. The mean half‐weight association index (HWI) of the population was 0.07 ± 0.02. The highest HWIs for individuals of known sex were for female‐male pairs. Mean within‐class HWI was significantly higher than mean between‐class HWI for both age and area classes. Ordinations and sociograms were used to visualize social networks. Permutation tests revealed nonrandom associations for the population overall and both between and within classes. Temporal analyses showed associations persisting for >1,000 d. The whole population's best fit model was for two levels of casual acquaintances. Movement analyses demonstrated the use of the inner estuary by only 25% of the population revealing a potential community division by area. The difference between mean HWI when socializing (0.09 ± 0.03) compared to foraging (0.06 ± 0.03) was significant. These results highlight the importance of localized research, reflecting the complexity found in bottlenose dolphin societies globally.  相似文献   

4.
Regional populations of bottlenose dolphins (Tursiops truncatus) around New Zealand are genetically isolated from each other and the species was recently classified as nationally endangered based on relatively small population sizes and reports of high calf mortality. Here, we estimate the abundance and trends in one of these regional populations, the Bay of Islands, using a photo‐identification database collected from 1997 to 1999 and from 2003 to 2006, containing a total of 3,841 records of 317 individual dolphins. Estimates of abundance obtained with the robust design fluctuated widely but showed a significant decline in the number of dolphins present in the bay over time (7.5% annual rate of decline). Temporary emigration was random and fluctuated considerably (γ  =  0.18, SE = 0.07 to γ  =  0.84, SE = 0.06). Apparent survival was estimated at 0.928 (CI = 0.911–0.942). Seasonal estimates (26 seasons) obtained in POPAN also showed a significant decline in abundance (5.8% annual rate of decline). Despite the decline observed in local abundance, dolphins continue to be found regularly in the Bay of Islands, suggesting that fewer dolphins use the bay on regular basis. Consequently, it seems that a change in habitat use, mortality and possibly low recruitment could underlie the apparent local decline.  相似文献   

5.
Social network analysis has been shown to be effective in studying the social structure of cetacean populations. Common bottlenose dolphins (Tursiops truncatus) inhabiting the Indian River Lagoon (IRL), Florida, have among the highest concentrations of total mercury (THg) in blood reported worldwide. The purpose of this study was to examine the relationship between THg concentrations in IRL dolphins and their social affiliations. Whole blood samples from 98 dolphins with photo‐identification sighting histories were collected between 2003–2007 and 2010–2012. Dolphins were categorized into approximate tertiles of low (mean 199.7 μg/L), medium (mean 366.8 μg/L), and high (mean 990.5 μg/L) THg exposure. Social associations between individual dolphins were defined by the proportion of sightings documented with another known individual. Social network measures of individuals and associations between dyads were examined to determine differences among THg categories. Strong social affiliations of individuals within the highest category of THg were found (P = 0.04), suggesting shared exposures among dolphins foraging in specific areas of the estuary. Network measures of strength and affinity were significantly higher in the highest exposure category. This report used social network analysis as a novel way to examine patterns of exposure to an environmental contaminant in a cetacean population.  相似文献   

6.
Sympatric forms of ecologically distinctive killer whales (Orcinus orca) have been documented worldwide. This study focused on a new case of such sympatric occurrence of the “Crozet” type and the recently described “type D” killer whales off the Crozet Islands. The two ecotypes are morphologically and genetically distinct, but they both depredate the same local longline fishery. We used observational, photo‐identification, and fishing data, collected between 2003 and 2015, to examine differences in their patterns of depredation. Of the 828 sets where ecotype could be confirmed, type D killer whales interacted with 82 (11%) of the sets, including 9 (1%) sets that were simultaneously depredated by both ecotypes. Associations between the two types were never observed. Type D killer whales typically occurred in larger groups and both ecotypes preferentially depredated Patagonian toothfish (Dissostichus eleginoides). GLMM modeling revealed that the probability of type D depredation significantly increased throughout the study period, especially in deep waters, and photo‐identification data suggested that a subset of all individuals were habituating to depredation. This study documents the partitioning of resources between two distinct ecotypes of killer whales and provides preliminary insight into the feeding ecology of the rare type D killer whale.  相似文献   

7.
Mixed‐species associations are temporary associations between individuals of different species that are often observed in birds, primates and cetaceans. They have been interpreted as a strategy to reduce predation risk, enhance foraging success and/or provide a social advantage. In the archipelago of the Azores, four species of dolphins are commonly involved in mixed‐species associations: the common dolphin, Delphinus delphis, the bottlenose dolphin, Tursiops truncatus, the striped dolphin, Stenella coeruleoalba, and the spotted dolphin, Stenella frontalis. In order to understand the reasons why dolphins associate, we analysed field data collected since 1999 by research scientists and trained observers placed onboard fishing vessels. In total, 113 mixed‐species groups were observed out of 5720 sightings. The temporal distribution, habitat (water depth, distance to the coast), behaviour (i.e. feeding, travelling, socializing), size and composition of mixed‐species groups were compared with those of single‐species groups. Results did not support the predation avoidance hypothesis and gave little support to the social advantage hypothesis. The foraging advantage hypothesis was the most convincing. However, the benefits of mixed‐species associations appeared to depend on the species. Associations were likely to be opportunistic in the larger bottlenose dolphin, while there seemed to be some evolutionary constraints favouring associations in the rarer striped dolphin. Comparison with previous studies suggests that the formation of mixed‐species groups depends on several environmental factors, and therefore may constitute an adaptive response.  相似文献   

8.
Killer whales (Orcinus orca) were first placed into captivity in 1961 and are now found in theme parks around the world. Despite successful breeding of captive killer whales since 1985 there is growing concern for their welfare in captivity, which often includes claims of poor survival. We employed Kaplan‐Meier and Cox Proportional hazards models and annual survival rate analyses on 201 captive killer whales to discern how sex, facility (U.S. vs. foreign), captive‐born vs. wild‐captured, pre‐ vs. post‐1 January 1985, and animal age upon entering captivity affect survival. Overall median survival estimate was 6.1 yr, with no difference between male and female survival. Killer whales in U.S. facilities (12.0 yr) demonstrated a significantly higher median survival than those in foreign facilities (4.4 yr), as did whales entering captivity post‐1 January 1985 (11.8 yr) vs. those entering prior to 1 January 1985 (3.9 yr). Median survival for captive‐born (14.1 yr) was significantly higher than wild‐captured killer whales (5.5 yr), though the two failed to differ among the post‐1 January 1985 cohort. Facility location and pre‐ vs. post‐1 January 1985 were predictors of the hazard rate. Survival of captive killer whale cohorts has generally improved through time, although survival to age milestones are poor when compared to wild killer whales.  相似文献   

9.
In 2007 and 2008, controlled exposure experiments were performed in the Bahamas to study behavioral responses to simulated mid‐frequency active sonar (MFA) by three groups of odontocetes: false killer whales, Pseudorca crassidens; short‐finned pilot whales, Globicephala macrorhynchus; and melon‐headed whales, Peponocephala electra. An individual in each group was tagged with a Dtag to record acoustic and movement data. During exposures, some individuals produced whistles that seemed similar to the experimental MFA stimulus. Statistical tests were thus applied to investigate whistle‐MFA similarity and the relationship between whistle production rate and MFA reception time. For the false killer whale group, overall whistle rate and production rate of the most MFA‐like whistles decreased with time since last MFA reception. Despite quite low whistle rates overall by the melon‐headed whales, statistical results indicated minor transient silencing after each signal reception. There were no apparent relationships between pilot whale whistle rates and MFA sounds within the exposure period. This variability of responses suggests that changes in whistle production in response to acoustic stimuli depend not only on species and sound source, but also on the social, behavioral, or environmental contexts of exposure.  相似文献   

10.
Diet studies are fundamental for understanding trophic connections in marine ecosystems. In the southeastern US, the common bottlenose dolphin Tursiops truncatus is the predominant marine mammal in coastal waters, but its role as a top predator has received little attention. Diet studies of piscivorous predators, like bottlenose dolphins, start with assessing prey otoliths recovered from stomachs or feces, but digestive erosion hampers species identification and underestimates fish weight (FW). To compensate, FW is often estimated from the least affected otoliths and scaled to other otoliths, which also introduces bias. The sulcus, an otolith surface feature, has a species‐specific shape of its ostium and caudal extents, which is within the otolith edge for some species. We explored whether the sulcus could improve species identification and estimation of prey size using a case study of four sciaenid species targeted by fisheries and bottlenose dolphins in North Carolina. Methods were assessed first on otoliths from a reference collection (n = 421) and applied to prey otoliths (n = 5,308) recovered from 120 stomachs of dead stranded dolphins. We demonstrated in reference‐collection otoliths that cauda to sulcus length (CL:SL) could discriminate between spotted seatrout (Cynoscion nebulosus) and weakfish (Cynoscion regalis) (classification accuracy = 0.98). This method confirmed for the first time predation of spotted seatrout by bottlenose dolphins in North Carolina. Using predictive models developed from reference‐collection otoliths, we provided evidence that digestion affects otolith length more than sulcus or cauda length, making the latter better predictors. Lastly, we explored scenarios of calculating total consumed biomass across degrees of digestion. A suggested approach was for the least digested otoliths to be scaled to other otoliths iteratively from within the same stomach, month, or season as samples allow. Using the otolith sulcus helped overcome challenges of species identification and fish size estimation, indicating their potential use in other diet studies.  相似文献   

11.
Predation risk has a profound influence on the behavior of marine mammals, affecting grouping patterns and habitat use. Dolphins frequently bear evidence of shark bites, which can provide an indirect measure of predation pressure. Using photo‐identification data, we investigated the prevalence of shark bites on three sympatric species of inshore dolphin, the Australian snubfin (Orcaella heinsohni), Australian humpback (Sousa sahulensis), and Indo‐Pacific bottlenose dolphin (Tursiops aduncus), among four study sites in northwestern Australia. Bite prevalence varied markedly between species, with 72% of snubfin, 46% of humpback, and 18% of bottlenose dolphins exhibiting evidence of shark bites. Binomial logistic regression confirmed a high likelihood of bite presence on snubfin dolphins, and at one particular site for snubfin and bottlenose dolphins. The prevalence of tiger shark (Galeocerdo cuvier) bites on snubfin dolphins was high, and bites attributed to other carcharhinid sharks were observed on all species. While acknowledging methodological differences with other studies, the prevalence of shark bites on snubfin dolphins is among the highest reported for any dolphins, suggesting predation risk represents an important but varying influence thereon. This study provides a baseline for future investigations into the affect of predation risk on the behavioral ecology of these sympatric species.  相似文献   

12.
Reproductive seasonality of common bottlenose dolphins (Tursiops truncatus) can be affected by numerous ecological and behavioral factors. In 2009, stock boundaries were revised to recognize a Charleston Estuarine System Stock (CESS) of bottlenose dolphins in Charleston, South Carolina. The CESS is a well‐studied population with long‐term data collected from photo‐identification and stranding studies. From 2004 to 2008, a systematic mark‐recapture photo‐identification study was conducted in the Charleston Estuary to estimate population size of the CESS. Sightings data from this photo‐identification study coupled with strandings data (1993–2008) were analyzed to determine the reproductive seasonality of this local population. Both neonate sightings and strandings depicted a primary season of reproduction in the spring into early summer with a small peak in neonate sightings in early autumn, and were significantly different from circular uniform and Von Mises distributions (strandings: < 0.01, = 2.8644; sightings: < 0.01, = 3.2302). This study increases the knowledge of seasonal reproductive patterns of estuarine stocks of bottlenose dolphin stocks in the southeastern United States. The results will also help wildlife managers detect unusual neonate mortality events, and provide information about critical habitat relevant for evaluating and mitigating coastal development projects.  相似文献   

13.
The present study represents the first reported boat-based photographic identification study of Indo-Pacific bottlenose dolphins (Tursiops aduncus) off the Wild Coast of southeast South Africa. This area is known for the annual sardine run, which attracts apex predators to the region during the austral winter. Dedicated photo-identification surveys were conducted along this coast at three different study sites in February, June, and November of each year from 2014 to 2016. During 47 surveys, 136 bottlenose dolphin groups were encountered, an estimated 4,474 dolphins observed, and 2,149 individuals were identified. Although most individuals (N = 1,770, 82.4%) were only observed once, some were resighted 2–7 times (N = 379, 17.6%), with an average of 305 days (range: 88–705 days) between resightings. The majority of bottlenose dolphins were resighted within the same study site (N = 192), indicating some degree of residency. However, 65 individuals were observed at two different study sites, indicating individual movements along the coast. Our findings contrast earlier suggestions that bottlenose dolphins only use the Wild Coast during the sardine run, as we found large number of animals year-round with some level of site fidelity. This highlights the importance of the Wild Coast to bottlenose dolphins and provides further information on their status off southeastern South Africa.  相似文献   

14.
Resource partitioning is an important process driving habitat use and foraging strategies in sympatric species that potentially compete. Differences in foraging behavior are hypothesized to contribute to species coexistence by facilitating resource partitioning, but little is known on the multiple mechanisms for partitioning that may occur simultaneously. Studies are further limited in the marine environment, where the spatial and temporal distribution of resources is highly dynamic and subsequently difficult to quantify. We investigated potential pathways by which foraging behavior may facilitate resource partitioning in two of the largest co‐occurring and closely related species on Earth, blue (Balaenoptera musculus) and humpback (Megaptera novaeangliae) whales. We integrated multiple long‐term datasets (line‐transect surveys, whale‐watching records, net sampling, stable isotope analysis, and remote‐sensing of oceanographic parameters) to compare the diet, phenology, and distribution of the two species during their foraging periods in the highly productive waters of Monterey Bay, California, USA within the California Current Ecosystem. Our long‐term study reveals that blue and humpback whales likely facilitate sympatry by partitioning their foraging along three axes: trophic, temporal, and spatial. Blue whales were specialists foraging on krill, predictably targeting a seasonal peak in krill abundance, were present in the bay for an average of 4.7 months, and were spatially restricted at the continental shelf break. In contrast, humpback whales were generalists apparently feeding on a mixed diet of krill and fishes depending on relative abundances, were present in the bay for a more extended period (average of 6.6 months), and had a broader spatial distribution at the shelf break and inshore. Ultimately, competition for common resources can lead to behavioral, morphological, and physiological character displacement between sympatric species. Understanding the mechanisms for species coexistence is both fundamental to maintaining biodiverse ecosystems, and provides insight into the evolutionary drivers of morphological differences in closely related species.  相似文献   

15.
Dolphins (Tursiops truncatus) and their relatives might be expected to show mirror-induced contingency checking, a prerequisite to self-recognition, because of their high brain development, their complex social life and their demonstrated abilities in bodily imitation. A study of killer whales'(Orcinus orca) behaviour in front of a mirror is presented, including a mark test. Shorter investigations of mirror behaviour are also described in false killer whales (Pseudorca crassidens) and California sea lions (Zalophus californianus). Contingency checking was present in killer whales and possibly also in false killer whales, but no clear contingency checking was observed in sea lions. The mark test on killer whales suggested that the marked animal anticipated that its image would look different. This study shows that killer whales and false killer whales, like bottlenose dolphins, appear to possess the cognitive abilities required for self-recognition.  相似文献   

16.
Many coastal delphinids exhibit social structures with a high degree of fission‐fusion dynamics. However, little is known about fission‐fusion dynamics in semipelagic delphinids such as dusky dolphins (Lagenorhynchus obscurus). We analyzed dusky dolphin social structure in a winter foraging habitat in New Zealand. We examined the population‐level societal attributes of preferred/avoided companions, behaviorally specific preferred/avoided companions, and simple ratio (SR) association index strength and distribution and the dyad‐level societal attribute of temporal patterning of associations. We identified 741 individuals; 99 met inclusion criteria for analysis. Long‐term and short‐term preferred/avoided companions were present in the pooled (6 yr) and annual samples. Individuals were observed to form long‐term but not short‐term preferred/avoided companions during all behavioral states. Mean and maximum SRs were 0.03 ± 0.01 SD and 0.40 ± 0.20 SD, respectively. Temporal analysis indicated that individuals associated preferentially throughout the study period. Dusky dolphins exhibited high social fluidity, as indicated by many weak and few strong associations. However, there was stability as individuals were observed to form behaviorally specific preferred/avoided companions and associate preferentially throughout the 6 yr period. Dusky dolphins thus display a dynamic social structure where overall low levels of bonding are juxtaposed against a subset of the population that forms strong bonds.  相似文献   

17.
Studies of short‐finned pilot whales suggest they travel in stable mixed‐sex groups composed of strongly associated individuals; however, temporal analyses of social structure are lacking. To examine site fidelity, association patterns, and temporal relationships, we analyzed data from 267 encounters of this species off the island of Hawai‘i from 2003 through 2007, identifying 448 distinctive individuals (68.1% seen more than once). About 72% of the whales were linked by association into a single social network, suggesting the possibility of multiple populations using the area. Sighting histories suggested that only some individuals exhibit high site fidelity. Individuals demonstrated preferential associations and community division was strongly supported by average‐linkage hierarchical cluster analysis of the association data. Nine longitudinally stable social units composed of key individuals and their constant companions were identified. Qualitative assignment of age and sex classes of unit members indicated that some segregation between adult males and female/calf pairs may occur. Temporal analyses of individuals encountered on the same day indicate stable long‐term associations. Differential patterns of residency and site fidelity were unexpected and may be indicative of multiple populations around the main Hawaiian Islands. The presence of a resident population demonstrating strong, long‐term site fidelity and associations off Hawai‘i Island may warrant special management considerations.  相似文献   

18.
Killer whales (Orcinus orca) have strong social matrilineal bonds and form groups and long-lasting associations, but little is known about their population or social structure in an equatorial setting such as the waters around the Galápagos Islands. Using 91 encounters and identification photographs from 1991 to 2017, we identified 64 killer whales of which 18 individuals were locals with high resighting rates. Group size was small, ranging from 1 to 15 animals, with 69% of the groups containing four or fewer animals. Using social network analysis (SOCPROG 2.7) whales grouped into three distinct units and one loose association with frequent exchange between different groups. One male–male unit showed a strong association (association strength = 0.55). Overall, associations lasted over at least 3 years. Our data give first evidence of a loose social organization of Galápagos killer whales, similar to fission-fusion societies.  相似文献   

19.
Long‐term social structure data on small delphinids is lacking for most species except the bottlenose dolphin. This study describes the long‐term social structure of one community of Atlantic spotted dolphins, Stenella frontalis, divided into three social clusters. Data from 12 yr were analyzed using SOCPROG 2.3. Coefficients of association (CoA) were calculated using the half‐weight index. The overall mean community CoA ranged from 0.09 to 0.12. Temporal analyses and mantel tests revealed significant differences between sex class associations due to high male‐male CoA (0.12–0.23) compared to female‐female and mixed sex CoA (0.08–0.10). Female associations were strongly influenced by reproductive status, calf care, and social familiarity, but not by age class. Male associations were strongly influenced by age, access to females, and alliance formation. Males showed two levels of alliance formation, long‐term first order pairs/trios (CoA 0.70–1.00) and shorter‐term second order alliances between two or more first order alliances (CoA 0.45–0.69), and a possible third level during interspecies interactions. Mating strategies, sex, and cluster formation shaped the social structure in this spotted dolphin community. Similar to many bottlenose dolphin studies, long‐term affiliations for spotted dolphins were correlated with age, sex, and reproductive status.  相似文献   

20.
Little is known about short‐finned pilot whales (Globicephala macrorhynchus) in the western North Pacific outside of Japanese coastal waters. To expand understanding of short‐finned pilot whale ecology in the region, we conducted small‐boat surveys in 2010?2016 within the Mariana Archipelago to investigate individual associations, movements, spatial use, and dive behavior of short‐finned pilot whales. We collected genetic, photo‐identification, and satellite‐tag data and identified 191 distinctive individuals. A preliminary social network diagram of photo‐cataloged individuals revealed a main cluster that comprised 82% of individuals, representing all five mitochondrial DNA haplotypes identified within the population. Kernel density estimates for tagged short‐finned pilot whales (n = 11) during summer were used to identify areas with the highest probability of use (10% probability density contour), core area (50%) and home range (95%). The area with highest probability of use by short‐finned pilot whales was off the northwest side of Guam. Satellite tag data also suggest that some individuals are island‐associated year‐round. Data from five location‐dive tags demonstrated that the short‐finned pilot whales dove more often to intermediate depths at twilight and night, suggesting they may target prey that forage on the deep scattering layer as it migrates to and from the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号