首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Initiation of actinorhodin export in Streptomyces coelicolor   总被引:1,自引:0,他引:1  
Many microorganisms produce molecules having antibiotic activity and expel them into the environment, presumably enhancing their ability to compete with their neighbours. Given that these molecules are often toxic to the producer, mechanisms must exist to ensure that the assembly of the export apparatus accompanies or precedes biosynthesis. Streptomyces coelicolor produces the polyketide antibiotic actinorhodin in a multistep pathway involving enzymes encoded by genes that are clustered together. Embedded within the cluster are genes for actinorhodin export, two of which, actR and actA resemble the classic tetR and tetA repressor/efflux pump-encoding gene pairs that confer resistance to tetracycline. Like TetR, which represses tetA, ActR is a repressor of actA. We have identified several molecules that can relieve repression by ActR. Importantly (S)-DNPA (an intermediate in the actinorhodin biosynthetic pathway) and kalafungin (a molecule related to the intermediate dihydrokalafungin), are especially potent ActR ligands. This suggests that along with the mature antibiotic(s), intermediates in the biosynthetic pathway might activate expression of the export genes thereby coupling export to biosynthesis. We suggest that this could be a common feature in the production of many bioactive natural products.  相似文献   

2.
Genetic modification of large DNA fragments(gene clusters) is of great importance in synthetic biology and combinatorial biosynthesis as it facilitates rational design and modification of natural products to increase their value and productivity.In this study,we developed a method for scarless and precise modification of large gene clusters by using RecET/RED-mediated polymerase chain reaction(PCR) targeting combined with Gibson assembly.In this strategy,the biosynthetic genes for peptidyl moieties(HPHT) in the nikkomycin biosynthetic gene cluster were replaced with those for carbamoylpolyoxamic acid(CPOAA)from the polyoxin biosynthetic gene cluster to generate a~40 kb hybrid gene cluster in Escherichia coli with a reusable targeting cassette.The reconstructed cluster was introduced into Streptomyces lividans TK23 for heterologous expression and the expected hybrid antibiotic,polynik A,was obtained and verified.This study provides an efficient strategy for gene cluster reconstruction and modification that could be applied in synthetic biology and combinatory biosynthesis to synthesize novel bioactive metabolites or to improve antibiotic production.  相似文献   

3.
On the evolution of functional secondary metabolites (natural products)   总被引:7,自引:0,他引:7  
It is argued that organisms have evolved the ability to biosynthesize secondary metabolites (natural products) because of the selectional advantages they obtain as a result of the functions of the compounds. The clustering together of antibiotic biosynthesis, regulation, and resistance genes implies that these genes have been selected as a group and that the antibiotics function in antagonistic capacities in nature. Pleiotropic switching, the simultaneous expression of sporulation and antibiotic biosynthesis genes, is interpreted in terms of the defence roles of antibiotics. We suggest a general mechanism for the evolution of secondary metabolite biosynthesis pathways, and argue against the hypothesis that modern antibiotics had prebiotic effector functions, on the basis that it does not account for modern biosynthetic pathways.  相似文献   

4.
Prokaryotic aminoacylated-transfer RNAs often need to be efficiently segregated between translation and other cellular biosynthetic pathways. Many clinically relevant bacteria, including Streptococcus pneumoniae, Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa direct some aminoacylated-tRNA species into peptidoglycan biosynthesis and/or membrane phospholipid modification. Subsequent indirect peptidoglycan cross-linkage or change in membrane permeability is often a prerequisite for high-level antibiotic resistance. In Streptomycetes, aminoacylated-tRNA species are used for antibiotic synthesis as well as antibiotic resistance. The direction of coding aminoacylated-tRNA molecules away from translation and into antibiotic resistance and synthesis pathways are discussed in this review.  相似文献   

5.
6.
7.
8.
Summary Genes encoding enzymes for tylosin biosynthesis, genes involved in the expression of resistance to tylosin (Tyl), hygromycin B (Hm), chloramphenicol (Cm), and mitomycin C (MC), and a single copy of an amplifiable unit of DNA (AUD) were jointly transferred at very high frequencies by conjugation from several different Streptomyces fradiae strains to S. fradiae JS85, a mutant defective in many or possibly all tylosin biosynthetic reactions and containing a multiple tandem reiteration of the AUD. No recombination was observed between nar, rif and spc genes in conjugal matings, but recombination was observed between these genes after protoplast fusion. Tylosin biosynthetic genes were transferred at a much lower frequency to S. fradiae JS87, another mutant defective in many or all tylosin biosynthetic reactions, but deleted for the AUD and other DNA sequences. These findings suggest that tylosin structural genes, several genes encoding antibiotic resistance determinants, and amplifiable DNA are present on a self-transmissible element that does not mobilize chromosomal genes, and that JS85 and JS87 contain deletions, and JS85 an amplification, of overlapping portions of this element.  相似文献   

9.
10.
11.
The antipsychotic drug thioridazine is a candidate drug for an alternative treatment of infections caused by methicillin-resistant Staphylococcus aureus (MRSA) in combination with the β-lactam antibiotic oxacillin. The drug has been shown to have the capability to resensitize MRSA to oxacillin. We have previously shown that the expression of some resistance genes is abolished after treatment with thioridazine and oxacillin. To further understand the mechanism underlying the reversal of resistance, we tested the expression of genes involved in antibiotic resistance and cell wall biosynthesis in response to thioridazine in combination with oxacillin. We observed that the oxacillin-induced expression of genes belonging to the VraSR regulon is reduced by the addition of thioridazine. The exclusion of such key factors involved in cell wall biosynthesis will most likely lead to a weakened cell wall and affect the ability of the bacteria to sustain oxacillin treatment. Furthermore, we found that thioridazine itself reduces the expression level of selected virulence genes and that selected toxin genes are not induced by thioridazine. In the present study, we find indications that the mechanism underlying reversal of resistance by thioridazine relies on decreased expression of specific genes involved in cell wall biosynthesis.  相似文献   

12.
13.
Fragments spanning 20 kb of Streptomyces nogalater genomic DNA were characterized to elucidate the molecular genetic basis of the biosynthetic pathway of the anthracycline antibiotic nogalamycin. Structural analysis of the products obtained by expression of the fragments in S. galilaeus and S. peucetius mutants producing aclacinomycin and daunomycin metabolites, respectively, revealed hybrid compounds in which either the aglycone or the sugar moiety was modified. Subsequent sequence analysis revealed twenty ORFs involved in nogalamycin biosynthesis, of which eleven could be assigned to the deoxysugar pathway, four to aglycone biosynthesis, while the remaining five express products with unknown function. On the basis of sequence similarity and experimental data, the functions of the products of the newly discovered genes were determined. The results suggest that the entire biosynthetic gene cluster for nogalamycin is now known. Furthermore, the compounds obtained by heterologous expression of the genes show that it is possible to use the genes in combinatorial biosynthesis to create novel chemical structures for drug screening purposes.  相似文献   

14.
A 613-bp fragment of an essential ketosynthase gene from the biosynthetic pathway of aromatic polyketide antibiotics was sequenced from 99 actinomycetes isolated from soil. Phylogenetic analysis showed that the isolates clustered into clades that correspond to the various classes of aromatic polyketides. Additionally, sequencing of a 120-bp fragment from the gamma-variable region of 16S ribosomal DNA (rDNA) and subsequent comparative sequence analysis revealed incongruity between the ketosynthase and 16S rDNA phylogenetic trees, which strongly suggests that there has been horizontal transfer of aromatic polyketide biosynthesis genes. The results show that the ketosynthase tree could be used for DNA fingerprinting of secondary metabolites and for screening interesting aromatic polyketide biosynthesis genes. Furthermore, the movement of the ketosynthase genes suggests that traditional marker molecules like 16S rDNA give misleading information about the biosynthesis potential of aromatic polyketides, and thus only molecules that are directly involved in the biosynthesis of secondary metabolites can be used to gain information about the biodiversity of antibiotic production in different actinomycetes.  相似文献   

15.
Recombinant microorganisms for industrial production of antibiotics   总被引:2,自引:0,他引:2  
The enhancement of industrial antibiotic yield has been achieved through technological innovations and traditional strain improvement programs based on random mutation and screening. The development of recombinant DNA techniques and their application to antibiotic producing microorganisms has allowed yield increments and the design of biosynthetic pathways giving rise to new antibiotics. Genetic manipulations of the cephalosporin producing fungus Cephalosporium acremonium have included yield improvements, accomplished increasing biosynthetic gene dosage or enhancing oxygen uptake, and new biosynthetic capacities as 7-aminocephalosporanic acid (7-ACA) or penicillin G production. Similarly, in Penicillium chrysogenum, the industrial penicillin producing fungus, heterologous expression of cephalosporin biosynthetic genes has led to the biosynthesis of adipyl-7-aminodeacetoxycephalosporanic acid (adipyl-7-ADCA) and adipyl-7-ACA, compounds that can be transformed into the economically relevant 7-ADCA and 7-ACA intermediates. Escherichia coli expression of the genes encoding D-amino acid oxidase and cephalosporin acylase activities has simplified the bioconversion of cephalosporin C into 7-ACA, eliminating the use of organic solvents. The genetic manipulation of antibiotic producing actinomycetes has allowed productivity increments and the development of new hybrid antibiotics. A legal framework has been developed for the confined manipulation of genetically modified organisms. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 216-226, 1997.  相似文献   

16.
Ramoplanin, a non-ribosomally synthesized peptide antibiotic, is highly effective against several drug-resistant Gram-positive bacteria, including vancomycin-resistant Enterococcus faecium (VRE) and methicillin-resistant Staphylococcus aureus (MRSA), two important opportunistic human pathogens. Recently, the biosynthetic cluster from the ramoplanin producer Actinoplanes ATCC 33076 was sequenced, revealing an unusual architecture of fatty acid and non-ribosomal peptide synthetase biosynthetic genes (NRPSs). The first steps towards understanding how these biosynthetic enzymes cooperatively interact to produce the depsipeptide product are expression and isolation of each enzyme to probe its specificity and function. Here we describe the successful production of soluble enzymes from within the ramoplanin locus and the confirmation of their specific role in biosynthesis. These methods may be broadly applicable to the production of biosynthetic enzymes from other natural product biosynthetic gene clusters, especially those that have been refractory to production in heterologous hosts despite standard expression optimization methods.  相似文献   

17.
Shao N  Vallon O  Dent R  Niyogi KK  Beck CF 《Plant physiology》2006,141(3):1128-1137
Mutants with defects in the cytochrome (cyt) b6/f complex were analyzed for their effect on the expression of a subgroup of nuclear genes encoding plastid-localized enzymes participating in chlorophyll biosynthesis. Their defects ranged from complete loss of the cytb6/f complex to point mutations affecting specifically the quinone-binding QO site. In these seven mutants, light induction of the tetrapyrrole biosynthetic genes was either abolished or strongly reduced. In contrast, a normal induction of chlorophyll biosynthesis genes was observed in mutants with defects in photosystem II, photosystem I, or plastocyanin, or in wild-type cells treated with 3-(3'4'-dichlorophenyl)-1,1-dimethylurea or 2,5-dibromo-3-methyl-6-isopropyl benzoquinone. We conclude that the redox state of the plastoquinone pool does not control light induction of these chlorophyll biosynthetic genes. The signal that affects expression of the nuclear genes appears to solely depend on the integrity of the cytb6/f complex QO site. Since light induction of these genes in Chlamydomonas has recently been shown to involve the blue light receptor phototropin, the results suggest that cytb6/f activity regulates a plastid-derived factor required for their expression. This signaling pathway differs from that which regulates state transitions, since mutant stt7, lacking a protein kinase involved in phosphorylation of the light-harvesting complex II, was not altered in the expression of the chlorophyll biosynthetic genes.  相似文献   

18.
19.
Micromonospora inyoensis produces sisomicin (Sm), an aminoglycoside antibiotic. The gene cluster of sisomicin biosynthesis spanning ca. 47 kb consists of 37 ORFs encoding various proteins for sisomicin biosynthesis, regulation, resistance and transport. The comparative genetic studies on the biosynthetic genes of sisomicin and gentamicin (Gm) reveal a similar biosynthetic route and provide a framework for the future biosynthetic studies. An erratum to this article can be found at  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号