共查询到20条相似文献,搜索用时 0 毫秒
1.
Rachael Y. Dudaniec Jessica Worthington Wilmer Jeffrey O. Hanson Matthew Warren Sarah Bell Jonathan R. Rhodes 《Molecular ecology》2016,25(2):470-486
Landscape genetics lacks explicit methods for dealing with the uncertainty in landscape resistance estimation, which is particularly problematic when sample sizes of individuals are small. Unless uncertainty can be quantified, valuable but small data sets may be rendered unusable for conservation purposes. We offer a method to quantify uncertainty in landscape resistance estimates using multimodel inference as an improvement over single model‐based inference. We illustrate the approach empirically using co‐occurring, woodland‐preferring Australian marsupials within a common study area: two arboreal gliders (Petaurus breviceps, and Petaurus norfolcensis) and one ground‐dwelling antechinus (Antechinus flavipes). First, we use maximum‐likelihood and a bootstrap procedure to identify the best‐supported isolation‐by‐resistance model out of 56 models defined by linear and non‐linear resistance functions. We then quantify uncertainty in resistance estimates by examining parameter selection probabilities from the bootstrapped data. The selection probabilities provide estimates of uncertainty in the parameters that drive the relationships between landscape features and resistance. We then validate our method for quantifying uncertainty using simulated genetic and landscape data showing that for most parameter combinations it provides sensible estimates of uncertainty. We conclude that small data sets can be informative in landscape genetic analyses provided uncertainty can be explicitly quantified. Being explicit about uncertainty in landscape genetic models will make results more interpretable and useful for conservation decision‐making, where dealing with uncertainty is critical. 相似文献
2.
Lucinda P. Lawson 《Molecular ecology》2013,22(7):1947-1960
The Eastern Afromontane Biodiversity Hotspot is known for microendemism and exceptional population genetic structure. The region's landscape heterogeneity is thought to limit gene flow between fragmented populations and create opportunities for regional adaptation, but the processes involved are poorly understood. Using a combination of phylogeographic analyses and circuit theory, I investigate how characteristics of landscape heterogeneity including regional distributions of slope, rivers and streams, habitat and hydrological basins (drainages) impact genetic distance among populations of the endemic spotted reed frog (Hyperolius substriatus), identifying corridors of connectivity as well as barriers to dispersal. Results show that genetic distance among populations is most strongly correlated to regional and local hydrologic structure and the distribution of suitable habitat corridors, not isolation by distance. Contrary to expectations, phylogeographic structure is not coincident with the two montane systems, but instead corresponds to the split between the region's two major hydrological basins (Zambezi and East Central Coastal). This results in a paraphyletic relationship for the Malawian Highlands populations with respect to the Eastern Arc Mountains and implies that the northern Malawian Highlands are the diversity centre for H. substriatus. Although the Malawian Highlands collectively hold the greatest genetic diversity, individual populations have lower diversity than their Eastern Arc counterparts, with an overall pattern of decreasing population diversity from north to south. Through the study of intraspecific differentiation across a mosaic of ecosystem and geographic heterogeneity, we gain insight into the processes of diversification and a broader understanding of the role of landscape in evolution. 相似文献
3.
Katherine A. Zeller Tyler G. Creech Katie L. Millette Rachel S. Crowhurst Robert A. Long Helene H. Wagner Niko Balkenhol Erin L. Landguth 《Ecology and evolution》2016,6(12):4115-4128
Mantel‐based tests have been the primary analytical methods for understanding how landscape features influence observed spatial genetic structure. Simulation studies examining Mantel‐based approaches have highlighted major challenges associated with the use of such tests and fueled debate on when the Mantel test is appropriate for landscape genetics studies. We aim to provide some clarity in this debate using spatially explicit, individual‐based, genetic simulations to examine the effects of the following on the performance of Mantel‐based methods: (1) landscape configuration, (2) spatial genetic nonequilibrium, (3) nonlinear relationships between genetic and cost distances, and (4) correlation among cost distances derived from competing resistance models. Under most conditions, Mantel‐based methods performed poorly. Causal modeling identified the true model only 22% of the time. Using relative support and simple Mantel r values boosted performance to approximately 50%. Across all methods, performance increased when landscapes were more fragmented, spatial genetic equilibrium was reached, and the relationship between cost distance and genetic distance was linearized. Performance depended on cost distance correlations among resistance models rather than cell‐wise resistance correlations. Given these results, we suggest that the use of Mantel tests with linearized relationships is appropriate for discriminating among resistance models that have cost distance correlations <0.85 with each other for causal modeling, or <0.95 for relative support or simple Mantel r. Because most alternative parameterizations of resistance for the same landscape variable will result in highly correlated cost distances, the use of Mantel test‐based methods to fine‐tune resistance values will often not be effective. 相似文献
4.
Amidst the rapid advancement in next‐generation sequencing (NGS) technology over the last few years, salamanders have been left behind. Salamanders have enormous genomes—up to 40 times the size of the human genome—and this poses challenges to generating NGS data sets of quality and quantity similar to those of other vertebrates. However, optimization of laboratory protocols is time‐consuming and often cost prohibitive, and continued omission of salamanders from novel phylogeographic research is detrimental to species facing decline. Here, we use a salamander endemic to the southeastern United States, Plethodon serratus, to test the utility of an established protocol for sequence capture of ultraconserved elements (UCEs) in resolving intraspecific phylogeographic relationships and delimiting cryptic species. Without modifying the standard laboratory protocol, we generated a data set consisting of over 600 million reads for 85 P. serratus samples. Species delimitation analyses support recognition of seven species within P. serratus sensu lato, and all phylogenetic relationships among the seven species are fully resolved under a coalescent model. Results also corroborate previous data suggesting nonmonophyly of the Ouachita and Louisiana regions. Our results demonstrate that established UCE protocols can successfully be used in phylogeographic studies of salamander species, providing a powerful tool for future research on evolutionary history of amphibians and other organisms with large genomes. 相似文献
5.
The effects of recent climate changes on earth ecosystems are likely among the most important ecological concerns in human history. Good bioindicators are essential to properly assess the magnitude of these changes. In the last decades, studies have suggested that the morph proportion of the eastern red‐backed salamander (Plethodon cinereus), one of the most widely distributed and abundant vertebrate species in forests of eastern North America, could be used as a proxy for monitoring climate changes. Based on new discoveries in the northern areas of the species' range and on one of the largest compilation ever made for a vertebrate in North America (236 109 observations compiled from 1880 to 2013 in 1148 localities), we demonstrate however that climatic and geographic variables do not influence the colour morph proportions in P. cinereus populations. Consequently, we show that the use of colour morph proportions of this species do not perform as an indicator of climate change. Our findings indicate that bioindicator paradigms can be significantly challenged by new ecological research and more representative databases. 相似文献
6.
7.
Erin E. Collins John S. Hargrove Thomas A. Delomas Shawn R. Narum 《Ecology and evolution》2020,10(17):9486-9502
Fish migrations are energetically costly, especially when moving between freshwater and saltwater, but are a viable strategy for Pacific salmon and trout (Oncorhynchus spp.) due to the advantageous resources available at various life stages. Anadromous steelhead (O. mykiss) migrate vast distances and exhibit variation for adult migration phenotypes that have a genetic basis at candidate genes known as greb1L and rock1. We examined the distribution of genetic variation at 13 candidate markers spanning greb1L, intergenic, and rock1 regions versus 226 neutral markers for 113 populations (n = 9,471) of steelhead from inland and coastal lineages in the Columbia River. Patterns of population structure with neutral markers reflected genetic similarity by geographic region as demonstrated in previous studies, but candidate markers clustered populations by genetic variation associated with adult migration timing. Mature alleles for late migration had the highest frequency overall in steelhead populations throughout the Columbia River, with only 9 of 113 populations that had a higher frequency of premature alleles for early migration. While a single haplotype block was evident for the coastal lineage, we identified multiple haplotype blocks for the inland lineage. The inland lineage had one haplotype block that corresponded to candidate markers within the greb1L gene and immediately upstream in the intergenic region, and the second block only contained candidate markers from the intergenic region. Haplotype frequencies had similar patterns of geographic distribution as single markers, but there were distinct differences in frequency between the two haplotype blocks for the inland lineage. This may represent multiple recombination events that differed between lineages where phenotypic differences exist between freshwater entry versus arrival timing as indicated by Micheletti et al. (2018a). Redundancy analyses were used to model environmental effects on allelic frequencies of candidate markers, and significant variables were migration distance, temperature, isothermality, and annual precipitation. This study improves our understanding of the spatial distribution of genetic variation underlying adult migration timing in steelhead as well as associated environmental factors and has direct conservation and management implications. 相似文献
8.
Aapo Kahilainen Inka Keränen Katja Kuitunen Janne S. Kotiaho K. Emily Knott 《Molecular ecology》2014,23(20):4976-4988
Spatial genetic structure (SGS) is largely determined by colonization history, landscape and ecological characteristics of the species. Therefore, sympatric and ecologically similar species are expected to exhibit similar SGSs, potentially enabling prediction of the SGS of one species from that of another. On the other hand, due to interspecific interactions, ecologically similar species could have different SGSs. We explored the SGSs of the closely related Calopteryx splendens and Calopteryx virgo within Finland and related the genetic patterns to characteristics of the sampling localities. We observed different SGSs for the two species. Genetic differentiation even within short distances in C. splendens suggests genetic drift as an important driver. However, we also observed indication of previous gene flow (revealed by a negative relationship between genetic differentiation and increasing potential connectivity of the landscape). Interestingly, genetic diversity of C. splendens was negatively related to density of C. virgo, suggesting that interspecific interactions influence the SGS of C. splendens. In contrast, genetic differentiation between C. virgo subpopulations was low and only exhibited relationships with latitude, pointing to high gene flow, colonization history and range margin effects as the drivers of SGS. The different SGSs of the two ecologically similar species caution indirect inferences of SGS based on ecologically similar surrogate species. 相似文献
9.
10.
Kristopher J. Winiarski William E. Peterman Andrew R. Whiteley Kevin McGarigal 《Molecular ecology resources》2020,20(1):97-113
The importance of assessing spatial data at multiple scales when modelling species–environment relationships has been highlighted by several empirical studies. However, no landscape genetics studies have optimized landscape resistance surfaces by evaluating relevant spatial predictors at multiple spatial scales. Here, we model multiscale/layer landscape resistance surfaces to estimate resistance to inferred gene flow for two vernal pool breeding salamander species, spotted (Ambystoma maculatum) and marbled (A. opacum) salamanders. Multiscale resistance surface models outperformed spatial layers modelled at their original spatial scale. A resistance surface with forest land cover at a 500‐m Gaussian kernel bandwidth and normalized vegetation index at a 100‐m Gaussian kernel bandwidth was the top optimized resistance surface for A. maculatum, while a resistance surface with traffic rate and topographic curvature, both at a 500‐m Gaussian kernel bandwidth, was the top optimized resistance surface for A. opacum. Species‐specific resistant kernels were fit at all vernal pools in our study area with the optimized multiscale/layer resistance surface controlling kernel spread. Vernal pools were then evaluated and scored based on surrounding upland habitat (local score) and connectivity with other vernal pools on the landscape, with resistant kernels driving vernal pool connectivity scores. As expected, vernal pools that scored highest were in areas within forested habitats and with high vernal pool densities and low species‐specific landscape resistance. Our findings highlight the success of using a novel analytical approach in a multiscale framework with applications beyond vernal pool amphibian conservation. 相似文献
11.
12.
Kyle A. O'Connell Kevin P. Mulder Jose Maldonado Kathleen L. Currie Dennis M. Ferraro 《Ecology and evolution》2019,9(6):3620-3636
Effective conservation and management of pond‐breeding amphibians depends on the accurate estimation of population structure, demographic parameters, and the influence of landscape features on breeding‐site connectivity. Population‐level studies of pond‐breeding amphibians typically sample larval life stages because they are easily captured and can be sampled nondestructively. These studies often identify high levels of relatedness between individuals from the same pond, which can be exacerbated by sampling the larval stage. Yet, the effect of these related individuals on population genetic studies using genomic data is not yet fully understood. Here, we assess the effect of within‐pond relatedness on population and landscape genetic analyses by focusing on the barred tiger salamanders (Ambystoma mavortium) from the Nebraska Sandhills. Utilizing genome‐wide SNPs generated using a double‐digest RADseq approach, we conducted standard population and landscape genetic analyses using datasets with and without siblings. We found that reduced sample sizes influenced parameter estimates more than the inclusion of siblings, but that within‐pond relatedness led to the inference of spurious population structure when analyses depended on allele frequencies. Our landscape genetic analyses also supported different models across datasets depending on the spatial resolution analyzed. We recommend that future studies not only test for relatedness among larval samples but also remove siblings before conducting population or landscape genetic analyses. We also recommend alternative sampling strategies to reduce sampling siblings before sequencing takes place. Biases introduced by unknowingly including siblings can have significant implications for population and landscape genetic analyses, and in turn, for species conservation strategies and outcomes. 相似文献
13.
Robert B. Page Claire Conarroe Diana Quintanilla Andriea Palomo Joshua Solis Ashley Aguilar Kelly Bezold Andrew M. Sackman David M. Marsh 《Ecology and evolution》2020,10(18):9948-9967
Climate change poses several challenges to biological communities including changes in the frequency of encounters between closely related congeners as a result of range shifts. When climate change leads to increased hybridization, hybrid dysfunction or genetic swamping may increase extinction risk—particularly in range‐restricted species with low vagility. The Peaks of Otter Salamander, Plethodon hubrichti, is a fully terrestrial woodland salamander that is restricted to ~18 km of ridgeline in the mountains of southwestern Virginia, and its range is surrounded by the abundant and widespread Eastern Red‐backed Salamander, Plethodon cinereus. In order to determine whether these two species are hybridizing and how their range limits may be shifting, we assessed variation at eight microsatellite loci and a 1,008 bp region of Cytochrome B in both species at allopatric reference sites and within a contact zone. Our results show that hybridization between P. hubrichti and P. cinereus either does not occur or is very rare. However, we find that diversity and differentiation are substantially higher in the mountaintop endemic P. hubrichti than in the widespread P. cinereus, despite similar movement ability for the two species as assessed by a homing experiment. Furthermore, estimation of divergence times between reference and contact zone populations via approximate Bayesian computation is consistent with the idea that P. cinereus has expanded into the range of P. hubrichti. Given the apparent recent colonization of the contact zone by P. cinereus, future monitoring of P. cinereus range limits should be a priority for the management of P. hubrichti populations. 相似文献
14.
Daryl R. Trumbo Stephen F. Spear Jason Baumsteiger Andrew Storfer 《Molecular ecology》2013,22(5):1250-1266
A species' genetic structure often varies in response to ecological and landscape processes that differ throughout the species' geographic range, yet landscape genetics studies are rarely spatially replicated. The Cope's giant salamander (Dicamptodon copei) is a neotenic, dispersal‐limited amphibian with a restricted geographic range in the Pacific northwestern USA. We investigated which landscape factors affect D. copei gene flow in three regions spanning the species' range, which vary in climate, landcover and degree of anthropogenic disturbance. Least cost paths and Circuitscape resistance analyses revealed that gene flow patterns vary across the species' range, with unique combinations of landscape variables affecting gene flow in different regions. Populations in the northern coastal portions of the range had relatively high gene flow, largely facilitated by stream and river networks. Near the southeastern edge of the species' range, gene flow was more restricted overall, with relatively less facilitation by streams and more limitation by heat load index and fragmented forest cover. These results suggested that the landscape is more difficult for individuals to disperse through at the southeastern edge of the species' range, with terrestrial habitat desiccation factors becoming more limiting to gene flow. We suggest that caution be used when attempting to extrapolate landscape genetic models and conservation measures from one portion of a species' range to another. 相似文献
15.
S. Jha 《Molecular ecology》2015,24(5):993-1006
Much of the world's terrestrial landscapes are being altered by humans in the form of agriculture, urbanization and pastoral systems, with major implications for biodiversity. Bumble bees are one of the most effective pollinators in both natural and cultivated landscapes, but are often the first to be extirpated in human‐altered habitats. Yet, little is known about the role of natural and human‐altered habitats in promoting or limiting bumble bee gene flow. In this study, I closely examine the genetic structure of the yellow‐faced bumble bee, Bombus vosnesenskii, across the southwestern US coast and find strong evidence that natural oceanic barriers, as well as contemporary human‐altered habitats, limit bee gene flow. Heterozygosity and allelic richness were lower in island populations, while private allelic richness was higher in island populations compared to mainland populations. Genetic differentiation, measured for three indices across the 1000 km study region, was significantly greater than the null expectation (FST = 0.041, F’ST = 0.044 and Dest = 0.155) and correlated with geographic distance. Furthermore, genetic differentiation patterns were most strongly correlated with contemporary (2011) not past (2006, 2001) resistance maps calibrated for high dispersal limitation over oceans, impervious habitat and croplands. Despite the incorporation of dramatic elevation gradients, the analyses reveal that oceans and contemporary human land use, not mountains, are the primary dispersal barriers for B. vosnesenskii gene flow. These findings reinforce the importance of maintaining corridors of suitable habitat across the distribution range of native pollinators to promote their persistence and safeguard their ability to provide essential pollination services. 相似文献
16.
Jeffrey R. Row Sara J. Oyler‐McCance Jennifer A. Fike Michael S. O'Donnell Kevin E. Doherty Cameron L. Aldridge Zachary H. Bowen Bradley C. Fedy 《Ecology and evolution》2015,5(10):1955-1969
Given the significance of animal dispersal to population dynamics and geographic variability, understanding how dispersal is impacted by landscape patterns has major ecological and conservation importance. Speaking to the importance of dispersal, the use of linear mixed models to compare genetic differentiation with pairwise resistance derived from landscape resistance surfaces has presented new opportunities to disentangle the menagerie of factors behind effective dispersal across a given landscape. Here, we combine these approaches with novel resistance surface parameterization to determine how the distribution of high‐ and low‐quality seasonal habitat and individual landscape components shape patterns of gene flow for the greater sage‐grouse (Centrocercus urophasianus) across Wyoming. We found that pairwise resistance derived from the distribution of low‐quality nesting and winter, but not summer, seasonal habitat had the strongest correlation with genetic differentiation. Although the patterns were not as strong as with habitat distribution, multivariate models with sagebrush cover and landscape ruggedness or forest cover and ruggedness similarly had a much stronger fit with genetic differentiation than an undifferentiated landscape. In most cases, landscape resistance surfaces transformed with 17.33‐km‐diameter moving windows were preferred, suggesting small‐scale differences in habitat were unimportant at this large spatial extent. Despite the emergence of these overall patterns, there were differences in the selection of top models depending on the model selection criteria, suggesting research into the most appropriate criteria for landscape genetics is required. Overall, our results highlight the importance of differences in seasonal habitat preferences to patterns of gene flow and suggest the combination of habitat suitability modeling and linear mixed models with our resistance parameterization is a powerful approach to discerning the effects of landscape on gene flow. 相似文献
17.
Jessica A. Castillo Clinton W. Epps Anne R. Davis Samuel A. Cushman 《Molecular ecology》2014,23(4):843-856
Climate change is arguably the greatest challenge to conservation of our time. Most vulnerability assessments rely on past and current species distributions to predict future persistence but ignore species' abilities to disperse through landscapes, which may be particularly important in fragmented habitats and crucial for long‐term persistence in changing environments. Landscape genetic approaches explore the interactions between landscape features and gene flow and can clarify how organisms move among suitable habitats, but have suffered from methodological uncertainties. We used a landscape genetic approach to determine how landscape and climate‐related features influence gene flow for American pikas (Ochotona princeps) in Crater Lake National Park. Pikas are heat intolerant and restricted to cool microclimates; thus, range contractions have been predicted as climate changes. We evaluated the correlation between landscape variables and genetic distance using partial Mantel tests in a causal modelling framework, and used spatially explicit simulations to evaluate methods of model optimization including a novel approach based on relative support and reciprocal causal modelling. We found that gene flow was primarily restricted by topographic relief, water and west‐facing aspects, suggesting that physical restrictions related to small body size and mode of locomotion, as well as exposure to relatively high temperatures, limit pika dispersal in this alpine habitat. Our model optimization successfully identified landscape features influencing resistance in the simulated data for this landscape, but underestimated the magnitude of resistance. This is the first landscape genetic study to address the fundamental question of what limits dispersal and gene flow in the American pika. 相似文献
18.
19.
Michael S. Crossley Yolanda H. Chen Russell L. Groves Sean D. Schoville 《Molecular ecology》2017,26(22):6284-6300
The ability of insect pests to rapidly and repeatedly adapt to insecticides has long challenged entomologists and evolutionary biologists. Since Crow's seminal paper on insecticide resistance in 1957, new data and insights continue to emerge that are relevant to the old questions about how insecticide resistance evolves: such as whether it is predominantly mono‐ or polygenic, and evolving from standing vs. de novo genetic variation. Many studies support the monogenic hypothesis, and current management recommendations assume single‐ or two‐locus models. But inferences could be improved by integrating data from a broader sample of pest populations and genomes. Here, we generate evidence relevant to these questions by applying a landscape genomics framework to the study of insecticide resistance in a major agricultural pest, Colorado potato beetle, Leptinotarsa decemlineata (Say). Genome–environment association tests using genomic variation from 16 populations spanning gradients of landscape variables associated with insecticide exposure over time revealed 42 strong candidate insecticide resistance genes, with potentially overlapping roles in multiple resistance mechanisms. Measurements of resistance to a widely used insecticide, imidacloprid, among 47 L. decemlineata populations revealed heterogeneity at a small (2 km) scale and no spatial signature of origin or spread throughout the landscape. Analysis of nucleotide diversity suggested candidate resistance loci have undergone varying degrees of selective sweeps, often maintaining similar levels of nucleotide diversity to neutral loci. This study suggests that many genes are involved in insecticide resistance in L. decemlineata and that resistance likely evolves from both de novo and standing genetic variation. 相似文献
20.
Investigating the consequences of landscape features on population genetic patterns is increasingly important to elucidate the ecological factors governing connectivity between populations and predicting the evolutionary consequences of landscapes. Small prairie lakes in Alberta, Canada, and the brook stickleback (Culaea inconstans) that inhabit them, provide a unique aquatic system whereby populations are highly isolated from one another. These heterogeneous and extreme environments are prone to winterkills, an event whereby most of the fish die and frequent bottlenecks occur. In this study, we characterized the genetic population structure of brook stickleback among several lakes, finding that the species is hierarchically influenced by within‐lake characteristics in small‐scale watersheds. Landscape genetic analyses of the role of spatial features found support for basin characteristics associated with genetic diversity and bottlenecks in 20% of the sampled lakes. These results suggest that brook stickleback population genetic patterns may be driven, at least in part, by ecological processes that accelerate genetic drift and landscape patterns associated with reduced dispersal. Collectively, these results reinforce the potential importance of connectivity in the maintenance of genetic diversity, especially in fragmented landscapes. 相似文献