首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In phosphatidylcholine (PC)-containing prokaryotes, only the methylation pathway of PC biosynthesis was thought to occur. However, a second choline-dependent pathway for PC formation, the PC synthase (Pcs) pathway, exists in Sinorhizobium (Rhizobium) meliloti in which choline is condensed with CDP-diacylglyceride. Here, we characterize the methylation pathway of PC biosynthesis in S. meliloti. A mutant deficient in phospholipid N-methyltransferase (Pmt) was complemented with a S. meliloti gene bank and the complementing DNA was sequenced. A gene coding for a S-adenosylmethionine-dependent N-methyltransferase was identified as the sinorhizobial Pmt, which showed little similarity to the corresponding enzyme from Rhodobacter sphaeroides. Upon expression of the sinorhizobial Pmt, besides phosphatidylcholine, the methylated intermediates of the methylation pathway, monomethylphosphatidylethanolamine and dimethylphosphatidylethanolamine, are also formed. When Pmt-deficient mutants of S. meliloti are grown on minimal medium, they cannot form PC, and they grow significantly more slowly than the wild type. Growth of the Pmt-deficient mutant in the presence of choline allows for PC formation via the Pcs pathway and restores wild-type-like growth. Double knock-out mutants, deficient in Pmt and in Pcs, are unable to form PC and show reduced growth even in the presence of choline. These results suggest that PC is required for normal growth of S. meliloti.  相似文献   

2.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and is estimated to be present in about 15% of the domain Bacteria. Usually, PC can be synthesized in bacteria by either of two pathways, the phospholipid N-methylation (Pmt) pathway or the phosphatidylcholine synthase (Pcs) pathway. The three subsequent enzymatic methylations of phosphatidylethanolamine are performed by a single phospholipid N-methyltransferase in some bacteria whereas other bacteria possess multiple phospholipid N-methyltransferases each one performing one or several distinct methylation steps. Phosphatidylcholine synthase condenses choline directly with CDP-diacylglycerol to form CMP and PC. Like in eukaryotes, bacterial PC also functions as a biosynthetic intermediate during the formation of other biomolecules such as choline, diacylglycerol, or diacylglycerol-based phosphorus-free membrane lipids. Bacterial PC may serve as a specific recognition molecule but it affects the physicochemical properties of bacterial membranes as well. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

3.
Phosphatidylcholine (PC) is an almost ubiquitous phospholipid in eukaryotic algae and plants but is not found in a few species, for example Chlamydomonas reinhardtii. We recently found that some species of the genus Chlamydomonas possess PC. In the universal pathway, PC is synthesized de novo by methylation of phosphatidylethanolamine (PE) or transfer of phosphocholine from cytidine diphosphate (CDP)‐choline to diacylglycerol. Phosphocholine, the direct precursor to CDP‐choline, is synthesized either by methylation of phosphoethanolamine or phosphorylation of choline. Here we analyzed the mechanism of PC biosynthesis in two species of Chlamydomonas (asymmetrica and sphaeroides) as well as in a red alga, Cyanidioschyzon merolae. Comparative genomic analysis of enzymes involved in PC biosynthesis indicated that C. merolae possesses only the PE methylation pathway. Radioactive tracer experiments using [32P]phosphate showed delayed labeling of PC with respect to PE, which was consistent with the PE methylation pathway. In Chlamydomonas asymmetrica, labeling of PC was detected from the early time of incubation with [32P]phosphate, suggesting the operation of phosphoethanolamine methylation pathway. Genomic analysis indeed detected the genes for the phosphoethanolamine methylation pathway. In contrast, the labeling of PC in C. sphaeroides was slow, suggesting that the PE methylation pathway was at work. These results as well as biochemical and computational results uncover an unexpected diversity of the mechanisms for PC biosynthesis in algae. Based on these results, we will discuss plausible mechanisms for the scattered distribution of the ability to biosynthesize PC in the genus Chlamydomonas.  相似文献   

4.
Phosphatidylcholine (PC) is a ubiquitous membrane lipid in eukaryotes but has been found in only a limited number of prokaryotes. Both eukaryotes and prokaryotes synthesize PC by methylating phosphatidylethanolamine (PE) by use of a phospholipid methyltransferase (Pmt). Eukaryotes can synthesize PC by the activation of choline to form choline phosphate and then CDP-choline. The CDP-choline then condenses with diacylglycerol (DAG) to form PC. In contrast, prokaryotes condense choline directly with CDP-DAG by use of the enzyme PC synthase (Pcs). PmtA was the first enzyme identified in prokaryotes that catalyzes the synthesis of PC, and Pcs in Sinorhizobium meliloti was characterized. The completed release of the Pseudomonas aeruginosa PAO1 genomic sequence contains on open reading frame predicted to encode a protein that is highly homologous (35% identity, 54% similarity) to PmtA from Rhodobacter sphaeroides. Moreover, the P. aeruginosa PAO1 genome encodes a protein with significant homology (39% amino acid identity) to Pcs of S. meliloti. Both the pcs and pmtA homologues were cloned from PAO1, and homologous sequences were found in almost all of the P. aeruginosa strains examined. Although the pathway for synthesizing PC by use of Pcs is functional in P. aeruginosa, it does not appear that this organism uses the PmtA pathway for PC synthesis. We demonstrate that the PC synthesized by P. aeruginosa PAO1 localized to both the inner and outer membranes, where it is readily accessible to its periplasmic, PC-specific phospholipase D.  相似文献   

5.
All bacteria are surrounded by at least one bilayer membrane mainly composed of phospholipids (PLs). Biosynthesis of the most abundant PLs phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and cardiolipin (CL) is well understood in model bacteria such as Escherichia coli. It recently emerged, however, that the diversity of bacterial membrane lipids is huge and that not yet explored biosynthesis pathways exist, even for the common PLs. A good example is the plant pathogen Xanthomonas campestris pv. campestris. It contains PE, PG and CL as major lipids and small amounts of the Nmethylated PE derivatives monomethyl PE and phosphatidylcholine (PC = trimethylated PE). Xanthomonas campestris uses a repertoire of canonical and non‐canonical enzymes for the synthesis of its membrane lipids. In this minireview, we briefly recapitulate standard pathways and integrate three recently discovered pathways into the overall picture of bacterial membrane biosynthesis.  相似文献   

6.
Phosphatidylethanolamine (PE) and cardiolipin (CL) are major components of bacterial and eukaryotic membranes. In bacteria, synthesis of PE usually occurs via decarboxylation of phosphatidylserine (PS) by PS decarboxylases (Psd). CL is produced by various CL synthases (Cls). Membranes of the plant pathogen Xanthomonas campestris predominantly contain PE, phosphatidylglycerol (PG) and CL. The X. campestris genome encodes one Psd and six putative CLs. Deletion of psd resulted in loss of PE and accumulation of PS. The mutant was severely affected in growth and cell size. PE synthesis, growth and cell division were partially restored when cells were supplied with ethanolamine (EA) suggesting a previously unknown PE synthase activity. Via mutagenesis, we identified a Cls enzyme (Xc_0186) responsible for EA‐dependent PE biosynthesis. Xanthomonas lacking xc_0186 not only lost its ability to utilize EA for PE synthesis but also produced less CL suggesting a bifunctional enzyme. Recombinant Xc_0186 in E. coli and in cell‐free extracts uses cytidine diphosphate diacylglycerol (CDP‐DAG) and PG for CL synthesis. It is also able to use CDP‐DAG and EA for PE synthesis. Owing to its dual function in CL and PE production, we consider Xc_0186 the founding member of a new class of enzymes called CL/PE synthase (CL/PEs).  相似文献   

7.
In addition to phosphatidylglycerol (PG), cardiolipin (CL), and phosphatidylethanolamine (PE), Sinorhizobium meliloti also possesses phosphatidylcholine (PC) as a major membrane lipid. The biosynthesis of PC in S. meliloti can occur via two different routes, either via the phospholipid N-methylation pathway, in which PE is methylated three times in order to obtain PC, or via the phosphatidylcholine synthase (Pcs) pathway, in which choline is condensed with CDP-diacylglycerol to obtain PC directly. Therefore, for S. meliloti, PC biosynthesis can occur via PE as an intermediate or via a pathway that is independent of PE, offering the opportunity to uncouple PC biosynthesis from PE biosynthesis. In this study, we investigated the first step of PE biosynthesis in S. meliloti catalyzed by phosphatidylserine synthase (PssA). A sinorhizobial mutant lacking PE was complemented with an S. meliloti gene bank, and the complementing DNA was sequenced. The gene coding for the sinorhizobial phosphatidylserine synthase was identified, and it belongs to the type II phosphatidylserine synthases. Inactivation of the sinorhizobial pssA gene leads to the inability to form PE, and such a mutant shows a greater requirement for bivalent cations than the wild type. A sinorhizobial PssA-deficient mutant possesses only PG, CL, and PC as major membrane lipids after growth on complex medium, but it grows nearly as well as the wild type under such conditions. On minimal medium, however, the PE-deficient mutant shows a drastic growth phenotype that can only partly be rescued by choline supplementation. Therefore, although choline permits Pcs-dependent PC formation in the mutant, it does not restore wild-type-like growth in minimal medium, suggesting that it is not only the lack of PC that leads to this drastic growth phenotype.  相似文献   

8.
Phosphatidylcholine (PC, lecithin) has long been considered a solely eukaryotic membrane lipid. Only a minority of all bacteria is able to synthesize PC. The plant‐transforming bacterium Agrobacterium tumefaciens encodes two potential PC forming enzymes, a phospholipid N‐methyltransferase (PmtA) and a PC synthase (Pcs). We show that PC biosynthesis and tumour formation on Kalanchoë plants was impaired in the double mutant. The virulence defect was due to a complete lack of the type IV secretion machinery in the Agrobacterium PC mutant. Our results strongly suggest that PC in bacterial membranes is an important determinant for the establishment of host–microbe interactions.  相似文献   

9.
Legionella micdadei is responsible for community- or nosocomial-acquired pneumonia as well as the influenza-like illness Pontiac fever. The aim of this study was to investigate the ability of L. micdadei to utilize extracellular choline for phosphatidylcholine (PC) synthesis and its consequences for the phospholipid composition of its membrane system and the interaction with the human LL-37 peptide. Comparative analysis of the PC content using isotopic labeling revealed that in presence of exogenous choline 98% of the total PC was synthesized via the Pcs pathway while the remaining 2% were generated via the PE-methylation (PmtA) pathway. PC species were to a greater extent defined by the Pcs pathway in the outer membrane than in the inner membrane. While no major changes in the bacterial lipid content were observed using 31P NMR, indication for utilization of longer acyl chains and slight increase of PG in response to choline addition was observed by a top-down lipidomics screen. The LL-37 peptide inhibited L. micdadei growth in a dose-dependent manner. Bacteria cultured with exogenous choline were more sensitive to the LL-37 peptide when compared to the standard culture condition. Our biophysical investigations show that the peptide perturbs bacterial-derived phospholipid monolayers and this interaction is dependent on the molar portion of PC. This interaction is responsible for the observed changes in the anti-L. micdadei activity of the LL-37 peptide.  相似文献   

10.
The biosynthesis of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in monocyte-like leukemia U937 cells was monitored by adding [3H]choline, [14C]ethanolamine or [14C]glycerol to the culture media; incorporation into phospholipid (PL) increased with time. The effect of unsaturated fatty acids (UFA) on PC and PE synthesis was investigated by pretreating U937 cells for 72h with 10 μM 18:1 (n –9), 18:2 (n –6), 18:3 (n –3), 20:4 (n –6) and 20:5 (n –3). The UFA caused no alteration in cell growth, as evidenced by light microscopy and the incorporation of [3H]thymidine and [3H]leucine. Total cellular uptake of radioactive precursors remained unaffected by all the treatments. Pretreatment with 20:5 resulted in approximately 25 per cent reduction in the incorporation of [3H]choline into PL, while no significant effect was detected with the other UFAs. 18:3, 20:4 and 20:5 depressed the incorporation of [14C]ethanolamine into PL by 34 per cent, 28 per cent and 49 per cent respectively. However, there was no redistribution of label with any of the treatments. 18:3, 20:4 and 20:5 also antagonized the stimulatory effect of endotoxin (LPS) on PC and PE synthesis. In addition, the incorporation from [14C]glycerol into PC and PE was reduced by 18:3, 20:4 and 20:5. Although the PL composition of the cells remained essentially unaffected, our study shows that chronic treatment of U937 cells with n –3 PUFA (20:5) depressed PC and PE synthesis, and 18:3 and 20:4 also caused inhibition of PE synthesis.  相似文献   

11.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and is estimated to be present in about 15% of eubacteria. It can be synthesized in bacteria by either of two pathways, the phospholipid N-methylation pathway or the phosphatidylcholine synthase (Pcs) pathway. Pcs belongs to the CDP-alcohol phosphotransferase superfamily and synthesizes PC and CMP in one step from CDP-diacylglycerol and choline. In this study, we aligned sequences of characterized Pcs enzymes to identify conserved amino acid residues. Alanine scanning mutagenesis was performed on 55 of these conserved residues. The mutation of nine residues caused a drastic to complete loss (< 20% of wild type activity) of Pcs activity. Six of these essential residues were subjected to further mutagenesis studies replacing them by amino acids with similar properties or size. A topological analysis of sinorhizobial Pcs showed the presence of eight transmembrane helices, with the C- and N-terminus located in the cytoplasm. The majority of the conserved residues is predicted to be either located within the cytoplasmic loops or on the cytoplasmic side of the membrane which can be expected for an enzyme using one membrane-associated and one soluble substrate.  相似文献   

12.
Abstract: Using rat striatal slices, we examined the effect of cytidine on the conversion of [3H]choline to [3H]-phosphatidylcholine ([3H]PC), and on net syntheses of PC, phosphatidylethanolamine (PE), and phosphatidylserine, when media did or did not also contain choline, ethanolamine, or serine. Incubation of striatal slices with cytidine (50–500 µM) caused dose-dependent increases in intracellular cytidine and cytidine triphosphate (CTP) levels and in the rate of incorporation of [3H]choline into membrane [3H]PC. In pulse-chase experiments, cytidine (200 µM) also increased significantly the conversion of [3H]choline to [3H]PC during the chase period. When slices were incubated with this concentration of cytidine for 1 h, small (7%) but significant elevations were observed in the absolute contents (nmol/mg of protein) of membrane PC and PE (p < 0.05), but not phosphatidylserine, the synthesis of which is independent of cytidine-containing CTP. Concurrent exposure to cytidine (200 µM) and choline (10 µM) caused an additional significant increase (p < 0.05) in tissue PC levels beyond that produced by cytidine alone. Exposure to choline alone at a higher concentration (40 µM) increased the levels of all three membrane phospholipids (p < 0.01); the addition of cytidine, however, did not cause further increases. Concurrent exposure to cytidine (200 µM) and ethanolamine (20 µM) also caused significantly greater elevations (p < 0.05) in tissue PE levels than those caused by cytidine alone. In contrast, the addition of serine (500 µM) did not enhance cytidine's effects on any membrane phospholipid. Exposure to serine alone, however, like exposure to sufficient choline, increased levels of all three membrane phospholipids significantly (p < 0.01). These data show that exogenous cytidine, probably acting via CTP and the Kennedy cycle, can increase the synthesis and levels of membrane PC and PE in brain cells.  相似文献   

13.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and is estimated to be present in about 15% of eubacteria. It can be synthesized in bacteria by either of two pathways, the phospholipid N-methylation pathway or the phosphatidylcholine synthase (Pcs) pathway. Pcs belongs to the CDP-alcohol phosphotransferase superfamily and synthesizes PC and CMP in one step from CDP-diacylglycerol and choline. In this study, we aligned sequences of characterized Pcs enzymes to identify conserved amino acid residues. Alanine scanning mutagenesis was performed on 55 of these conserved residues. The mutation of nine residues caused a drastic to complete loss (<20% of wild type activity) of Pcs activity. Six of these essential residues were subjected to further mutagenesis studies replacing them by amino acids with similar properties or size. A topological analysis of sinorhizobial Pcs showed the presence of eight transmembrane helices, with the C- and N-terminus located in the cytoplasm. The majority of the conserved residues is predicted to be either located within the cytoplasmic loops or on the cytoplasmic side of the membrane which can be expected for an enzyme using one membrane-associated and one soluble substrate.  相似文献   

14.
神经节苷脂GM3诱导人单核样白血病J6-2细胞沿单核/巨噬细胞途径分化.在GM3诱导分化同时,J6-2细胞磷脂代谢发生了显著变化.采用((32)P)Pi、[GH3-3H]胆碱和[CH3-3H]SAM参入实验对GM3影响J6-2细胞PC代谢的机制进行了初步的探讨.GM3促进[(32)P]Pi参入J6-2细胞PC;抑制[CH3-3H]胆碱参入PC及PC合成的前体磷酸胆碱及CDP-胆碱;GM3促进[CH3-3H]SAM参入PC,但抑制[CH3-3H]SAM参入PC合成的前体胆碱、磷酸胆碱和CDP-胆碱.上述结果提示,GM3抑制J6-2细胞PC合成的CDP-胆碱途径,促进PC合成的PE甲基化途径.  相似文献   

15.

Purpose

To assess the ability of a polarization transfer (PT) magnetic resonance spectroscopy (MRS) technique to improve the detection of the individual phospholipid metabolites phosphocholine (PC), phosphoethanolamine (PE), glycerophosphocholine (GPC), and glycerophosphoethanolamine (GPE) in vivo in breast tumor xenografts.

Materials and Methods

The adiabatic version of refocused insensitive nuclei enhanced by polarization transfer (BINEPT) MRS was tested at 9.4 Tesla in phantoms and animal models. BINEPT and pulse-acquire (PA) 31P MRS was acquired consecutively from the same orthotopic MCF-7 (n = 10) and MDA-MB-231 (n = 10) breast tumor xenografts. After in vivo MRS measurements, animals were euthanized, tumors were extracted and high resolution (HR)-MRS was performed. Signal to noise ratios (SNRs) and metabolite ratios were compared for BINEPT and PA MRS, and were also measured and compared with that from HR-MRS.

Results

BINEPT exclusively detected metabolites with 1H-31P coupling such as PC, PE, GPC, and GPE, thereby creating a significantly improved, flat baseline because overlapping resonances from immobile and partly mobile phospholipids were removed without loss of sensitivity. GPE and GPC were more accurately detected by BINEPT in vivo, which enabled a reliable quantification of metabolite ratios such as PE/GPE and PC/GPC, which are important markers of tumor aggressiveness and treatment response.

Conclusion

BINEPT is advantageous over PA for detecting and quantifying the individual phospholipid metabolites PC, PE, GPC, and GPE in vivo at high magnetic field strength. As BINEPT can be used clinically, alterations in these phospholipid metabolites can be assessed in vivo for cancer diagnosis and treatment monitoring.  相似文献   

16.
The Brucella cell envelope contains the zwitterionic phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Synthesis of PC occurs exclusively via the PC synthase pathway, implying that the pathogen depends on the choline synthesized by the host cell to form PC. Notably, PC is necessary to sustain a chronic infection process, which suggests that the membrane lipid content is relevant for Brucella virulence. In this study we investigated the first step of PE biosynthesis in B. abortus, which is catalyzed by phosphatidylserine synthase (PssA). Disruption of pssA abrogated the synthesis of PE without affecting the growth in rich complex medium. In minimal medium, however, the mutant required choline supplementation for growth, suggesting that at least PE or PC is necessary for Brucella viability. The absence of PE altered cell surface properties, but most importantly, it impaired several virulence traits of B. abortus, such as intracellular survival in both macrophages and HeLa cells, the maturation of the replicative Brucella-containing vacuole, and mouse colonization. These results suggest that membrane phospholipid composition is critical for the interaction of B. abortus with the host cell.  相似文献   

17.
Cell–cell communication mediated by diffusible signal factor (DSF) plays an important role in virulence of several Xanthomonas group of plant pathogens. In the bacterial pathogen of rice, Xanthomonas oryzae pv. oryzicola, DSF is required for virulence and in planta growth. In order to understand the role of DSF in promoting in planta growth and virulence, we have characterized the DSF deficient mutant of X. oryzae pv. oryzicola. Mutant analysis by expression analysis, radiolabelled iron uptake studies and growth under low‐iron conditions indicated that DSF positively regulates ferric iron uptake. Further, the DSF deficient mutant of X. oryzae pv. oryzicola exhibited a reduced capacity to use ferric form of iron for growth under low‐iron conditions. Exogenous iron supplementation in the rice leaves rescued the in planta growth deficiency of the DSF deficient mutant. These data suggest that DSF promotes in planta growth of X. oryzae pv. oryzicola by positively regulating functions involved in ferric iron uptake which is important for its virulence. Our results also indicate that requirement of iron uptake strategies to utilize either Fe3+ or Fe2+ form of iron for colonization may vary substantially among closely related members of the Xanthomonas group of plant pathogens.  相似文献   

18.
Phospholipid metabolism in cancer cells monitored by 31P NMR spectroscopy   总被引:5,自引:0,他引:5  
Addition of choline, ethanolamine, or hemicholinium-3 (a choline kinase inhibitor) to the perfusate of human breast cancer cells monitored by 31P NMR spectroscopy resulted in significant changes to phosphomonoester (PME) and phosphodiester (PDE) signals. These results enable us to assign the PMEs to phosphcholine (PC) and phosphoethanolamine (PE), the PDEs to glycerophosphorylcholine and glycerophosphorylethanolamine, and to define the pathways producing them. The PMEs are products of choline and ethanolamine kinases, the first steps in phospholipid synthesis; and the PDEs are substrates of glycerophosphorylcholine phosphodiesterase, the last step in phospholipid catabolism. Furthermore, PC and PE peaks are twice as intense in cells at log phase versus confluency. We also observed these signals in vivo in human colon and breast tumors grown in mice. Since PMEs are low in most nonproliferating tissues, they could form a basis for noninvasive diagnosis. Also, PE and PC are situated between the control enzymes of two major synthetic pathways and will allow noninvasive 31P NMR studies of these pathways in intact cells and in vivo.  相似文献   

19.
Phosphatidylcholine (PC) is a major component of membranes not only in eukaryotes, but also in several bacteria, including Acetobacter. To identify the PC biosynthetic pathway and its role in Acetobacter sp., we have studied Acetobacter aceti IFO3283, which is characterized by high ethanol oxidizing ability and high resistance to acetic acid. The pmt gene of A. aceti, encoding phosphatidylethanolamine N-methyltransferase (Pmt), which catalyzes methylation of phosphatidylethanolamine (PE) to PC, has been cloned and sequenced.

One recombinant plasmid that complemented the PC biosynthesis was isolated from a gene library of the genomic DNA of A. aceti. The pmt gene encodes a polypeptide with molecular mass of either 25125, 26216, or 29052 for an about 27-kDa protein. The sequence of this gene showed significant similarity (44.3% identity in the similar sequence region) with the Rhodobacter sphaeroides pmtA gene which is involved in PE N-methylation. When the pmt gene was expressed in E. coli, which lacks PC, the Pmt activity and PC formation were clearly demonstrated. A. aceti strain harboring an interrupted pmt allele, pmt::Km, was constructed. The pmt disruption was confirmed by loss of Pmt and PC, and by Southern blot analyses. The null pmt mutant contained no PC, but tenfold more PE and twofold more phosphatidylglycerol (PG). The pmt disruptant did not show any dramatic effects on growth in basal medium supplemented with ethanol, but the disruption caused slow growth in basal medium supplemented with acetate. These results suggest that the lack of PC in the A. aceti membrane may be compensated by the increases of PE and PG by an unknown mechanism, and PC in A. aceti membrane is related to its acetic acid tolerance.  相似文献   

20.
Brain 31P-neurometabolites play an important role in energy and membrane metabolism. Unambiguous identification and quantification of these neurochemicals in different brain regions would be a great aid in advancing the understanding of metabolic processes in the nervous system. Phosphomonoester (PME), consisting of phosphoethanolamine (PE) and phosphocholine (PC), is the “building block” for membranes, while phosphodiesters (PDE), consisting of glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE) metabolites are involved in the membrane breakdown process. In the clinical setting, generating well-resolved spectra for PC, PE, GPC, and GPE could be crucial phospholipids in providing information regarding membrane metabolism. We present here a new experimental approach for generating well-resolved 31P spectra for PC and PE as well as for GPC, GPE, and other 31P metabolites. Our results (based on uni-dimensional (1D) and multi-voxel 31P studies) indicate that an intermediate excitation pulse angle (35°) is best suited to obtain well-resolved PC/PE and GPC/GPE resonance peaks. Our novel signal processing scheme allows generating metabolite maps of different phospholipids include PC/PE and GPC/GPE using the ‘time-domain–frequency-domain’ method as referred to in the MATLAB programming language.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号