首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human‐altered environmental conditions affect many species at the global scale. An extreme form of anthropogenic alteration is the existence and rapid increase of urban areas. A key question, then, is how species cope with urbanization. It has been suggested that rural and urban conspecifics show differences in behaviour and personality. However, (i) a generalization of this phenomenon has never been made; and (ii) it is still unclear whether differences in personality traits between rural and urban conspecifics are the result of phenotypic plasticity or of intrinsic differences. In a literature review, we show that behavioural differences between rural and urban conspecifics are common and taxonomically widespread among animals, suggesting a significant ecological impact of urbanization on animal behaviour. In order to gain insight into the mechanisms leading to behavioural differences in urban individuals, we hand‐raised and kept European blackbirds (Turdus merula) from a rural and a nearby urban area under common‐garden conditions. Using these birds, we investigated individual variation in two behavioural responses to the presence of novel objects: approach to an object in a familiar area (here defined as neophilia), and avoidance of an object in a familiar foraging context (defined as neophobia). Neophilic and neophobic behaviours were mildly correlated and repeatable even across a time period of one year, indicating stable individual behavioural strategies. Blackbirds from the urban population were more neophobic and seasonally less neophilic than blackbirds from the nearby rural area. These intrinsic differences in personality traits are likely the result of microevolutionary changes, although we cannot fully exclude early developmental influences.  相似文献   

2.
Human‐induced biological invasions are common worldwide and often have negative impacts on wildlife and human societies. Several studies have shown evidence for selection on invaders after introduction to the new range. However, selective processes already acting prior to introduction have been largely neglected. Here, we tested whether such early selection acts on known behaviour‐related gene variants in the yellow‐crowned bishop (Euplectes afer), a pet‐traded African songbird. We tested for nonrandom allele frequency changes after trapping, acclimation and survival in captivity. We also compared the native source population with two independent invasive populations. Allele frequencies of two SNPs in the dopamine receptor D4 (DRD4) gene—known to be linked to behavioural activity in response to novelty in this species—significantly changed over all early invasion stages. They also differed between the African native population and the two invading European populations. The two‐locus genotype associated with reduced activity declined consistently, but strongest at the trapping stage. Overall genetic diversity did not substantially decrease, and there is little evidence for new alleles in the introduced populations, indicating that selection at the DRD4 gene predominantly worked on the standing genetic variation already present in the native population. Our study demonstrates selection on a behaviour‐related gene during the first stages of a biological invasion. Thus, pre‐establishment stages of a biological invasion do not only determine the number of propagules that are introduced (their quantity), but also their phenotypic and genetic characteristics (their quality).  相似文献   

3.
Quantifying the variation in behaviour‐related genes within and between populations provides insight into how evolutionary processes shape consistent behavioural traits (i.e. personality). Deliberate introductions of non‐native species offer opportunities to investigate how such genes differ between native and introduced populations and how polymorphisms in the genes are related to variation in behaviour. Here, we compared the genetic variation of the two ‘personality’ genes, DRD4 and SERT, between a native (United Kingdom, UK) and an introduced (New Zealand, NZ) population of dunnocks, Prunella modularis. The NZ population showed a significantly lower number of single nucleotide polymorphisms (SNPs) compared to the UK population. Standardized F’st estimates of the personality genes and neutral microsatellites indicate that selection (anthropogenic and natural) probably occurred during and post the introduction event. Notably, the largest genetic differentiation was found in the intronic regions of the genes. In the NZ population, we also examined the association between polymorphisms in DRD4 and SERT and two highly repeatable behavioural traits: flight‐initiation distance and mating status (promiscuous females and cobreeding males). We found 38 significant associations (for different allele effect models) between the two behavioural traits and the studied genes. Further, 22 of the tested associations showed antagonistic allele effects for males and females. Our findings illustrate how introduction events and accompanying ecological changes could influence the genetic diversity of behaviour‐related genes.  相似文献   

4.
The assessment of genetic architecture and selection history in genes for behavioural traits is fundamental to our understanding of how these traits evolve. The dopamine receptor D4 (DRD4) gene is a prime candidate for explaining genetic variation in novelty seeking behaviour, a commonly assayed personality trait in animals. Previously, we showed that a single nucleotide polymorphism in exon 3 of this gene is associated with exploratory behaviour in at least one of four Western European great tit (Parus major) populations. These heterogeneous association results were explained by potential variable linkage disequilibrium (LD) patterns between this marker and the causal variant or by other genetic or environmental differences among the populations. Different adaptive histories are further hypothesized to have contributed to these population differences. Here, we genotyped 98 polymorphisms of the complete DRD4 gene including the flanking regions for 595 individuals of the four populations. We show that the LD structure, specifically around the original exon 3 SNP is conserved across the four populations and does not explain the heterogeneous association results. Study‐wide significant associations with exploratory behaviour were detected in more than one haplotype block around exon 2, 3 and 4 in two of the four tested populations with different allele effect models. This indicates genetic heterogeneity in the association between multiple DRD4 polymorphisms and exploratory behaviour across populations. The association signals were in or close to regions with signatures of positive selection. We therefore hypothesize that variation in exploratory and other dopamine‐related behaviour evolves locally by occasional adaptive shifts in the frequency of underlying genetic variants.  相似文献   

5.
Polymorphisms in the dopamine receptor D4 gene (DRD4) have been related to individual variation in novelty‐seeking or exploratory behaviour in a variety of animals, including humans. Recently, the human DRD4 orthologue was sequenced in a wild bird, the great tit (Parus major) and a single nucleotide polymorphism in exon 3 of this gene (SNP830) was shown to be associated with variation in exploratory behaviour of lab‐raised individuals originating from a single wild population. Here we test the generality of this finding in a large sample of free‐living individuals from four European great tit populations, including the originally sampled population. We demonstrate that the association between SNP830 genotype and exploratory behaviour also exists in free‐living birds from the original population. However, in the other three populations we found only limited evidence for an association: in two populations the association appeared absent; while in one there was a nonsignificant tendency. We could not confirm a previously demonstrated interaction with another DRD4 polymorphism, a 15 bp indel in the promoter region (ID15). As yet unknown differences in genetic or environmental background could explain why the same genetic polymorphism (SNP830) has a substantial effect on exploratory behaviour in one population, explaining 4.5–5.8% of the total variance—a large effect for a single gene influencing a complex behavioural trait—but not in three others. The confirmation of an association between SNP830 genotype and personality‐related behaviour in a wild bird population warrants further research into potential fitness effects of the polymorphism, while also the population differences in the strength of the association deserve further investigation. Another important future challenge is the identification of additional loci influencing avian personality traits in the wild.  相似文献   

6.
The evolutionary significance of individual consistency in a given behaviour – called animal personality – has been subject to a lot of recent research. However, the genetic underpinnings of population divergence in mean personality have rarely been studied, especially across different ontogenetic stages. Previous work has shown that marine vs. pond populations of nine‐spined sticklebacks (Pungitius pungitius) have undergone adaptive divergence in a series of fitness‐related traits, including behaviour. One particular behavioural trait important in this system is feeding activity: giant pond sticklebacks are more active feeders than their normal sized marine conspecifics. In a common garden experiment, we raised individuals from pure and hybrid F1‐generation crosses of a highly divergent marine – pond population pair to see if (i) feeding activity and/or its ontogenetic change was consistent between individuals, and if (ii) population divergence at different ontogenetic stages could be explained by additive genetic, nonadditive genetic or maternal effects. We found that feeding activity decreased with age, but that these changes were consistently different among both individuals and crosses. The among cross patterns were consistent with a nonadditive genetic scenario: in the early period pond sticklebacks expressed dominance for high feeding activity, while in the late period marine sticklebacks expressed dominance for low feeding activity. We conclude that nine‐spined sticklebacks exhibit different feeding personalities, and that the population divergence in feeding personality is explainable by age‐dependent expression of genetic dominance.  相似文献   

7.
Consistency of between-individual differences in behaviour or personality is a phenomenon in populations that can have ecological consequences and evolutionary potential. One way that behaviour can evolve is to have a genetic basis. Identifying the molecular genetic basis of personality could therefore provide insight into how and why such variation is maintained, particularly in natural populations. Previously identified candidate genes for personality in birds include the dopamine receptor D4 (DRD4), and serotonin transporter (SERT). Studies of wild bird populations have shown that exploratory and bold behaviours are associated with polymorphisms in both DRD4 and SERT. Here we tested for polymorphisms in DRD4 and SERT in the Seychelles warbler (Acrocephalus sechellensis) population on Cousin Island, Seychelles, and then investigated correlations between personality and polymorphisms in these genes. We found no genetic variation in DRD4, but identified four polymorphisms in SERT that clustered into five haplotypes. There was no correlation between bold or exploratory behaviours and SERT polymorphisms/haplotypes. The null result was not due to lack of power, and indicates that there was no association between these behaviours and variation in the candidate genes tested in this population. These null findings provide important data to facilitate representative future meta-analyses on candidate personality genes.  相似文献   

8.
Both dopamine receptor D4 (DRD4) exon 3 and tyrosine hydroxylase (TH) intron 4 repeat polymorphisms have been linked to activity and impulsivity in German Shepherd dogs (GSDs). However, the results in GSDs may not be generalisable to other breeds, as allelic frequencies vary markedly among breeds. We selected the Siberian Husky for further study, because it is highly divergent from most dog breeds, including the GSD. The study sample consisted of 145 racing Siberian Huskies from Europe and North America. We found that this breed possesses seven DRD4 length variants, two to five more variants than found in other breeds. Among them was the longest known allele, previously described only in wolves. Short alleles of the DRD4 and TH repeat polymorphisms were associated with higher levels of activity, impulsivity and inattention. Siberian Huskies possessing at least one short allele of the DRD4 polymorphism displayed greater activity in a behavioural test battery than did those with two long alleles. However, the behavioural test was brief and may not have registered variation in behaviour across time and situations. Owners also completed the Dog‐Attention Deficit Hyperactivity Disorder Rating Scale (Dog‐ADHD RS), a more general measure of activity and attention. Siberian Huskies from Europe with two short alleles of the TH polymorphism received higher ratings of inattention on the Dog‐ADHD RS than did those with the long allele. Investigation of the joint effect of DRD4 and TH showed that dogs possessing long alleles at both sites were scored as less active–impulsive than were others. Our results are aligned with previous studies showing that DRD4 and TH polymorphisms are associated with activity–impulsivity related traits in dogs. However, the prevalence of variants of these genes differs across breeds, and the functional role of specific variants is unclear.  相似文献   

9.
Successful urban colonization by formerly rural species represents an ideal situation in which to study adaptation to novel environments. We address this issue using candidate genes for behavioural traits that are expected to play a role in such colonization events. We identified and genotyped 16 polymorphisms in candidate genes for circadian rhythms, harm avoidance and migratory and exploratory behaviour in 12 paired urban and rural populations of the blackbird Turdus merula across the Western Palaearctic. An exonic microsatellite in the SERT gene, a candidate gene for harm avoidance behaviour, exhibited a highly significant association with habitat type in an analysis conducted across all populations. Genetic divergence at this locus was consistent in 10 of the 12 population pairs; this contrasts with previously reported stochastic genetic divergence between these populations at random markers. Our results indicate that behavioural traits related to harm avoidance and associated with the SERT polymorphism experience selection pressures during most blackbird urbanization events. These events thus appear to be influenced by homogeneous adaptive processes in addition to previously reported demographic founder events.  相似文献   

10.
Discrepancies between potential and observed dispersal distances of reef fish indicate the need for a better understanding of the influence of larval behaviour on recruitment and dispersal. Population genetic studies can provide insight on the degree to which populations are connected, and the development of restriction site‐associated sequencing (RAD‐Seq) methods has made such studies of nonmodel organisms more accessible. We applied double‐digest RAD‐Seq methods to test for population differentiation in the coral reef‐dwelling cardinalfish, Siphamia tubifer, which based on behavioural studies, have the potential to use navigational cues to return to natal reefs. Analysis of 11,836 SNPs from fish collected at coral reefs in Okinawa, Japan, from eleven locations over 3 years reveals little genetic differentiation between groups of S. tubifer at spatial scales from 2 to 140 km and between years at one location: pairwise FST values were between 0.0116 and 0.0214. These results suggest that the Kuroshio Current largely influences larval dispersal in the region, and in contrast to expectations based on studies of other cardinalfishes, there is no evidence of population structure for S. tubifer at the spatial scales examined. However, analyses of outlier loci putatively under selection reveal patterns of temporal differentiation that indicate high population turnover and variable larval supply from divergent source populations between years. These findings highlight the need for more studies of fishes across various geographic regions that also examine temporal patterns of genetic differentiation to better understand the potential connections between early life‐history traits and connectivity of reef fish populations.  相似文献   

11.
Understanding the causes and consequences of population phenotypic divergence is a central goal in ecology and evolution. Phenotypic divergence among populations can result from genetic divergence, phenotypic plasticity or a combination of the two. However, few studies have deciphered these mechanisms for populations geographically close and connected by gene flow, especially in the case of personality traits. In this study, we used a common garden experiment to explore the genetic basis of the phenotypic divergence observed between two blue tit (Cyanistes caeruleus) populations inhabiting contrasting habitats separated by 25 km, for two personality traits (exploration speed and handling aggression), one physiological trait (heart rate during restraint) and two morphological traits (tarsus length and body mass). Blue tit nestlings were removed from their population and raised in a common garden for up to 5 years. We then compared adult phenotypes between the two populations, as well as trait‐specific Qst and Fst. Our results revealed differences between populations similar to those found in the wild, suggesting a genetic divergence for all traits. QstFst comparisons revealed that the trait divergences likely result from dissimilar selection patterns rather than from genetic drift. Our study is one of the first to report a QstFst comparison for personality traits and adds to the growing body of evidence that population genetic divergence is possible at a small scale for a variety of traits including behavioural traits.  相似文献   

12.
13.
Foraging decisions should reflect a balance between costs and benefits of alternative strategies. Predation risk and resource availability in the environment may be crucial in deciding how cautious individuals should behave during foraging. These costs and benefits will vary in time and context, meaning that animals should be able to adjust their foraging behaviour to new or altered environments. Studying how animals do this is essential to understand their survival in these environments. In this study, we investigated the effect of both insularity and urbanization on risk‐taking and neophobia during foraging in the Dalmatian wall lizard (Podarcis melisellensis). Small islets tend to have both a lower number of predators and less resources. Therefore, islet populations were expected to show more risk‐taking behaviour and less neophobia in a foraging context. Previous studies on behaviour of urban lizards have yielded inconsistent results, but due to a lack of both predators and arthropod prey in urban habitats, we expected urban lizards to also take more risks and behave less neophobic. We sampled several inhabited and uninhabited locations on Vis (Croatia) and surrounding islets. Risk‐taking behaviour was tested by measuring the latency of lizards to feed in the presence of a predator model, and neophobia by measuring the latency to feed in the presence of a novel object. We found that islet lizards do indeed take more risks and were less vigilant, but not less neophobic. Urban and rural lizards did not differ in any of these behaviours, which is in sharp contrast with previous work on mammals and birds. The behavioural differences between islet and island lizards were novel, but not unexpected findings and are in line with the theory of “island tameness”. The effect of urbanization on the behaviour of animals seems to be more complex and might vary among taxa.  相似文献   

14.
Patterns of local adaptation at fine spatial scales are central to understanding how evolution proceeds, and are essential to the effective management of economically and ecologically important forest tree species. Here, we employ single and multilocus analyses of genetic data (= 116 231 SNPs) to describe signatures of fine‐scale adaptation within eight whitebark pine (Pinus albicaulis Engelm.) populations across the local extent of the environmentally heterogeneous Lake Tahoe Basin, USA. We show that despite highly shared genetic variation (FST = 0.0069), there is strong evidence for adaptation to the rain shadow experienced across the eastern Sierra Nevada. Specifically, we build upon evidence from a common garden study and find that allele frequencies of loci associated with four phenotypes (mean = 236 SNPs), 18 environmental variables (mean = 99 SNPs), and those detected through genetic differentiation (n = 110 SNPs) exhibit significantly higher signals of selection (covariance of allele frequencies) than could be expected to arise, given the data. We also provide evidence that this covariance tracks environmental measures related to soil water availability through subtle allele frequency shifts across populations. Our results replicate empirical support for theoretical expectations of local adaptation for populations exhibiting strong gene flow and high selective pressures and suggest that ongoing adaptation of many P. albicaulis populations within the Lake Tahoe Basin will not be constrained by the lack of genetic variation. Even so, some populations exhibit low levels of heritability for the traits presumed to be related to fitness. These instances could be used to prioritize management to maintain adaptive potential. Overall, we suggest that established practices regarding whitebark pine conservation be maintained, with the additional context of fine‐scale adaptation.  相似文献   

15.
Personality traits in animals are often measured using standardised behavioural tests for activity, boldness/shyness, sociability, aggression and exploration. These tests are quick and convenient, as well as easy to repeat. As the interest in studying the impact of animal personality on ecological and evolutionary consequences has been growing rapidly, there is increasing focus on cross‐validating measurements taken during these tests with behaviours shown under natural situations. In our experiment, we aimed to study the relationship between standardised measurements for activity, exploration and anxiety‐like behaviour measured in Open Field, Novel Object and Elevated Plus Maze tests with exploration and colonisation in semi‐natural conditions. We carried out a semi‐natural enclosure experiment in parallel with standardised behavioural tests, creating a scenario similar to an invasion or dispersal event. We compared behaviours in standardised tests and in enclosures for animals of two populations of wild house mice (Mus musculus domesticus). Several behavioural variables taken during the standardised tests, such as distance moved and time spent with novel object, were negatively correlated with space‐use in the enclosure while being highly positively correlated among each other. Based on their relationship with space use, we refer to behavioural measurements from standardised tests as activity/exploration. The time spent near the walls in an open field, probably reflecting anxiety, was not correlated to any other variable or the behaviour in the enclosure. In addition, we found differences in activity/exploration behaviour between the two populations in the standardised tests, but not during the colonisation of the novel environment. These results emphasise that researchers have to be careful when trying to extrapolate behaviour shown in standardised laboratory test setups to more natural, ecologically relevant situations. This has to be taken into account in distantly related species but even when studying the wild relative of laboratory rodents, for which these standardised tests have originally been developed.  相似文献   

16.
A considerable number of single nucleotide polymorphisms (SNPs) are required to elucidate genotype–phenotype associations and determine the molecular basis of important traits. In this work, we carried out de novo SNP discovery accounting for both genome duplication and genetic variation from American and European salmon populations. A total of 9 736 473 nonredundant SNPs were identified across a set of 20 fish by whole‐genome sequencing. After applying six bioinformatic filtering steps, 200 K SNPs were selected to develop an Affymetrix Axiom® myDesign Custom Array. This array was used to genotype 480 fish representing wild and farmed salmon from Europe, North America and Chile. A total of 159 099 (79.6%) SNPs were validated as high quality based on clustering properties. A total of 151 509 validated SNPs showed a unique position in the genome. When comparing these SNPs against 238 572 markers currently available in two other Atlantic salmon arrays, only 4.6% of the SNP overlapped with the panel developed in this study. This novel high‐density SNP panel will be very useful for the dissection of economically and ecologically relevant traits, enhancing breeding programmes through genomic selection as well as supporting genetic studies in both wild and farmed populations of Atlantic salmon using high‐resolution genomewide information.  相似文献   

17.
Recent work on animal personalities has shown that individuals within populations often differ consistently in various types of behaviour and that many of these behaviours correlate among individuals to form behavioural syndromes. Individuals of certain species have also been shown to differ in their rate of behavioural innovation in arriving at novel solutions to new and existing problems (e.g., mazes, novel foods). Here, we investigate whether behaviours traditionally studied in personality research are correlated with individual rates of innovation as part of a wider behavioural syndrome. Guppies (Poecilia reticulata) of both sexes from three different wild population sources were assessed: (a) exploration of an open area; (b) speed through a three‐dimensional maze; (c) investigation of a novel object; and (d) attraction to a novel food. The covariance structure (syndrome structure) was examined using structural equation modelling. The best model separated behaviours relating to activity in all contexts from rates of exploration/investigation and innovation. Innovative behaviour (utilizing new food and moving through a novel area) in these fish therefore forms part of the same syndrome as the traditional shy‐bold continuum (exploration of an open area and investigation of a novel object) found in many animal personality studies. There were no clear differences in innovation or syndrome structure between the sexes, or between the three different populations. However, body size was implicated as part of the behavioural syndrome structure, and because body size is highly correlated with age in guppies, this suggests that individual behavioural differences in personality/innovation in guppies may largely be driven by developmental state.  相似文献   

18.
Estimating genetic diversity and inferring the evolutionary history of Plasmodium falciparum could be helpful in understanding origin and spread of virulent and drug‐resistant forms of the malaria pathogen and therefore contribute to malaria control programme. Genetic diversity of the whole mitochondrial (mt) genome of P. falciparum sampled across the major distribution ranges had been reported, but no Indian P. falciparum isolate had been analysed so far, even though India is highly endemic to P. falciparum malaria. We have sequenced the whole mt genome of 44 Indian field isolates and utilized published data set of 96 genome sequences to present global genetic diversity and to revisit the evolutionary history of P. falciparum. Indian P. falciparum presents high genetic diversity with several characteristics of ancestral populations and shares many of the genetic features with African and to some extent Papua New Guinean (PNG) isolates. Similar to African isolates, Indian P. falciparum populations have maintained high effective population size and undergone rapid expansion in the past with oldest time to the most recent common ancestor (TMRCA). Interestingly, one of the four single nucleotide polymorphisms (SNPs) that differentiates P. falciparum from P. falciparum‐like isolates (infecting non‐human primates in Africa) was found to be segregating in five Indian P. falciparum isolates. This SNP was in tight linkage with other two novel SNPs that were found exclusively in these five Indian isolates. The results on the mt genome sequence analyses of Indian isolates on the whole add to the current understanding on the evolutionary history of P. falciparum.  相似文献   

19.
Pear (Pyrus; 2n = 34), the third most important temperate fruit crop, has great nutritional and economic value. Despite the availability of many genomic resources in pear, it is challenging to genotype novel germplasm resources and breeding progeny in a timely and cost‐effective manner. Genotyping arrays can provide fast, efficient and high‐throughput genetic characterization of diverse germplasm, genetic mapping and breeding populations. We present here 200K AXIOM® PyrSNP, a large‐scale single nucleotide polymorphism (SNP) genotyping array to facilitate genotyping of Pyrus species. A diverse panel of 113 re‐sequenced pear genotypes was used to discover SNPs to promote increased adoption of the array. A set of 188 diverse accessions and an F1 population of 98 individuals from ‘Cuiguan’ × ‘Starkrimson’ was genotyped with the array to assess its effectiveness. A large majority of SNPs (166 335 or 83%) are of high quality. The high density and uniform distribution of the array SNPs facilitated prediction of centromeric regions on 17 pear chromosomes, and significantly improved the genome assembly from 75.5% to 81.4% based on genetic mapping. Identification of a gene associated with flowering time and candidate genes linked to size of fruit core via genome wide association studies showed the usefulness of the array in pear genetic research. The newly developed high‐density SNP array presents an important tool for rapid and high‐throughput genotyping in pear for genetic map construction, QTL identification and genomic selection.  相似文献   

20.
The genetic diversity and structure of invasive species are affected by the time since invasion, but it is not well understood how. We compare likely the oldest populations of Aedes aegypti in continental North America with some of the newest to illuminate the range of genetic diversity and structure that can be found within the invasive range of this important disease vector. Aedes aegypti populations in Florida have probably persisted since the 1600‐1700s, while populations in southern California derive from new invasions that occurred in the last 10 years. For this comparison, we genotyped 1,193 individuals from 28 sites at 12 highly variable microsatellites and a subset of these individuals at 23,961 single nucleotide polymorphisms (SNPs). This is the largest sample analyzed for genetic structure for either region, and it doubles the number of southern California populations previously analyzed. As predicted, the older populations (Florida) showed fewer indicators of recent founder effect and bottlenecks; in particular, these populations have dramatically higher genetic diversity and lower genetic structure. Geographic distance and driving distance were not good predictors of genetic distance in either region, especially southern California. Additionally, southern California had higher levels of genetic differentiation than any comparably sized documented region throughout the worldwide distribution of the species. Although population age and demographic history are likely driving these differences, differences in climate and transportation practices could also play a role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号