首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Aims: We investigated the effectiveness in vitro of the association between norfloxacin (NOR) and ursolic acid (UA) against Staphylococcus aureus. Methods and Results: The minimal inhibitory concentrations (MICs), the minimal bactericidal concentrations, the bacterial killing and the postantibiotic effect (PAE) of NOR and UA were determined both singly and in combination. A synergistic interaction was observed against Staph. aureus ATCC 29213: the mean PAEs were 3 h for NOR, ?1·2 h for UA (1 × MIC) and 2·0 h for UA (2 × MIC). Synergism was observed with longer PAEs and postantibiotic sub‐MIC effects after NOR/UA exposure. UA was also active against clinical isolates and methicillin‐resistant Staph. aureus. Conclusions: The application of antimicrobial combinations may address the rising resistance to established classes of both systemic and topical agents. Significance and Impact of the Study: In vitro interactions between NOR and UA may contribute to the development of novel topical agents for the treatment of skin infections as well as for topical formulations.  相似文献   

4.
5.
Coagulase (Coa) activity is essential for the virulence of Staphylococcus aureus (S aureus), one of the most important pathogenic bacteria leading to catheter‐related bloodstream infections (CRBSI). We have demonstrated that the mutation of coagulase improved outcomes in disease models of S aureus CRBSI, suggesting that targeting Coa may represent a novel antiinfective strategy for CRBSI. Here, we found that quercetin, a natural compound that does not affect S aureus viability, could inhibit Coa activity. Chemical biological analysis revealed that the direct engagement of quercetin with the active site (residues Tyr187, Leu221 and His228) of Coa inhibited its activity. Furthermore, treatment with quercetin reduced the retention of bacteria on catheter surfaces, decreased the bacterial load in the kidneys and alleviated kidney abscesses in vivo. These data suggest that antiinfective therapy targeting Coa with quercetin may represent a novel strategy and provide a new leading compound with which to combat bacterial infections.  相似文献   

6.
7.
Staphylococcus aureus (S. aureus) is a human pathogen that relies on the subversion of host phagocytes to support its pathogenic lifestyle. S. aureus strains can produce up to five beta‐barrel, bi‐component, pore‐forming leukocidins that target and kill host phagocytes. Thus, preventing immune cell killing by these toxins is likely to boost host immunity. Here, we describe the identification of glycine‐rich motifs within the membrane‐penetrating stem domains of the leukocidin subunits that are critical for killing primary human neutrophils. Remarkably, leukocidins lacking these glycine‐rich motifs exhibit dominant‐negative inhibitory effects toward their wild‐type toxin counterparts as well as other leukocidins. Biochemical and cellular assays revealed that these dominant‐negative toxins work by forming mixed complexes that are impaired in pore formation. The dominant‐negative leukocidins inhibited S. aureus cytotoxicity toward primary human neutrophils, protected mice from lethal challenge by wild‐type leukocidin, and reduced bacterial burden in a murine model of bloodstream infection. Thus, we describe the first example of staphylococcal bi‐component dominant‐negative toxins and their potential as novel therapeutics to combat S. aureus infection.  相似文献   

8.
9.
10.
11.
12.
13.
Isolation of Staphylococcus aureus (Staph. aureus) from Holstein milk samples with mastitis and nonmastitis was conducted to estimate its prevalence, antimicrobial resistance and toxin genes. A total of 353 milk samples were collected from three Chinese Holstein herds. Fifty‐three Staph. aureus isolates collected from 29 Staph. aureus‐positive samples were characterized via antimicrobial susceptibility, toxin genes and Pulsed‐field Gel Electrophoresis (PFGE) profiles. The prevalence of Staph. aureus was 4·0–9·5% in mastitic and 7·3–11·5% in nonmastitic samples in the analysed herds. Approximately 61·0% of Staph. aureus strains isolated from mastitis cows were resistant to ≥10 antimicrobials compared with 0% of isolates with nonmastitis. The most frequently observed super antigenic toxin gene was pvl (41·5%) followed by seh pvl (13·2%). We did not find mecA‐positive methicillin‐resistant Staph. aureus (MRSA) strains, while mecA‐negative MRSA strains were identified in the three herds. PFGE results suggested potential transmission of Staph. aureus strains in different farms. These results open new insights into Staph. aureus transmission and antimicrobial resistance of Holstein dairy cows and into developing strategies for udder health improvement of dairy cattle.  相似文献   

14.
15.
16.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) has emerged as a promising tool to rapidly characterize Staphylococcus aureus. Different protocols have been employed, but effects of experimental factors, such as culture condition and sample preparation, on spectrum quality and reproducibility have not been rigorously examined. We applied MALDI‐TOF MS to characterize a model system consisting of five methicillin‐sensitive (MSSA) and five methicillin‐resistant S. aureus isolates (MRSA) under two culture conditions (agar and broth) and using two sample preparation methods [intact cell method and protein extraction method (PEM)]. The effects of these treatments on spectrum quality and reproducibility were quantified. PEM facilitated increases in the number of peaks and mass range width. Broth cultures further improved spectrum quality in terms of increasing the number of peaks. In addition, PEM increased reproducibility in samples prepared using identical culture conditions. MALDI imaging data suggested that the improvement in reproducibility may result from a more homogeneous distribution of sample associated with the broth/PEM treatment. Broth/PEM treatment also yielded the highest rate (96%) of correct classification for MRSA. Taken together, these results suggest that broth/PEM maximizes the performance of MALDI‐TOF MS to characterize S. aureus.

Significance and Impact of the Study

Two culture conditions (agar or broth) and two sample preparation methods (intact cell or protein extraction) were evaluated for their effects on profiling of Staphylococcus aureus using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). Results indicated that MALDI‐enabled profiling of S. aureus is most effective when cultures are grown in broth and processed using a protein extraction‐based approach. These findings should enhance future efforts to maximize the performance of this approach to characterize strains of S. aureus.  相似文献   

17.
Airway epithelial tight junction (TJ) proteins form a resistive barrier to the external environment, however, during respiratory bacterial infection TJs become disrupted compromising barrier function. This promotes glucose flux/accumulation into the lumen which acts as a nutrient source for bacterial growth. Metformin used for the treatment of diabetes increases transepithelial resistance (TEER) and partially prevents the effect of bacteria but the mechanisms of action are unclear. We investigated the effect of metformin and Staphylococcus aureus on TJ proteins, zonula occludins (ZO)‐1 and occludin in human airway epithelial cells (H441). We also explored the role of AMP‐activated protein kinase (AMPK) and PKCζ in metformin‐induced effects. Pretreatment with metformin prevented the S. aureus‐induced changes in ZO‐1 and occludin. Metformin also promoted increased abundance of full length over smaller cleaved occludin proteins. The nonspecific PKC inhibitor staurosporine reduced TEER but did not prevent the effect of metformin indicating that the pathway may involve atypical PKC isoforms. Investigation of TJ reassembly after calcium depletion showed that metformin increased TEER more rapidly and promoted the abundance and localization of occludin at the TJ. These effects were inhibited by the AMPK inhibitor, compound C and the PKCζ pseudosubstrate inhibitor (PSI). Metformin increased phosphorylation of occludin and acetyl‐coA‐carboxylase but only the former was prevented by PSI. This study demonstrates that metformin improves TJ barrier function by promoting the abundance and assembly of full length occludin at the TJ and that this process involves phosphorylation of the protein via an AMPK‐PKCζ pathway.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号