首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we hypothesized that the microbial gut flora of animals/pests living in polluted environments, produce substances to thwart bacterial infections. The overall aim of this study was to source microbes inhabiting unusual environmental niches for potential antimicrobial activity. Two cockroach species, Gromphadorhina portentosa (Madagascar) and Blaptica dubia (Dubia) were selected. The gut bacteria from these species were isolated and grown in RPMI 1640 and conditioned media were prepared. Conditioned media were tested against a panel of Gram‐positive (Methicillin‐resistant Staphylococcus aureus, Streptococcus pyogenes, Bacillus cereus) and Gram‐negative (Escherichia coli K1, Salmonella enterica, Serratia marcescens, Pseudomonas aeruginosa, Klebsiella pneumoniae) bacteria, as well as the protist pathogen, Acanthamoeba castellanii. The results revealed that the gut bacteria of cockroaches produce active molecule(s) with potent antibacterial properties, as well as exhibit antiamoebic effects. However, heat‐inactivation at 95°C for 10 min had no effect on conditioned media‐mediated antibacterial and antiamoebic properties. These results suggest that bacteria from novel sources i.e. from the cockroach's gut produce molecules with bactericidal as well as amoebicidal properties that can ultimately lead to the development of therapeutic drugs.

Significance and Impact of the Study

The bacteria isolated from unusual dwellings such as the cockroaches' gut are a useful source of antibacterial and antiamoebal molecules. These are remarkable findings that will open several avenues in our search for novel antimicrobials from unique sources. Furthermore studies will lead to the identification of molecules to develop future antibacterials from insects.  相似文献   

2.
A unique lineage of bacteria belonging to the order Bacteroidales was identified as an intracellular endosymbiont of the protist Pseudotrichonympha grassii (Parabasalia, Hypermastigea) in the gut of the termite Coptotermes formosanus. We identified the 16S rRNA, gyrB, elongation factor Tu, and groEL gene sequences in the endosymbiont and detected a very low level of sequence divergence (<0.9% of the nucleotides) in the endosymbiont population within and among protist cells. The Bacteroidales endosymbiont sequence was affiliated with a cluster comprising only sequences from termite gut bacteria and was not closely related to sequences identified for members of the Bacteroidales attached to the cell surfaces of other gut protists. Transmission electron microscopy showed that there were numerous rod-shaped bacteria in the cytoplasm of the host protist, and we detected the endosymbiont by fluorescence in situ hybridization (FISH) with an oligonucleotide probe specific for the 16S rRNA gene identified. Quantification of the abundance of the Bacteroidales endosymbiont by sequence-specific cleavage of rRNA with RNase H and FISH cell counting revealed, surprisingly, that the endosymbiont accounted for 82% of the total bacterial rRNA and 71% of the total bacterial cells in the gut community. The genetically nearly homogeneous endosymbionts of Pseudotrichonympha were very abundant in the gut symbiotic community of the termite.  相似文献   

3.
Bacteria often produce toxins which kill competing bacteria. Colicins, produced by and toxic to Escherichia coli bacteria are three‐domain proteins so efficient that one molecule can kill a cell. The C‐terminal domain carries the lethal activity and the central domain is required for surface receptor binding. The N‐terminal domain, required for translocation across the outer membrane, is always intrinsically unstructured. It has always been assumed therefore that the C‐terminal cytotoxic domain is required for the bactericidal activity. Here we report the unexpected finding that in isolation, the 90‐residue unstructured N‐terminal domain of colicin N is cytotoxic. Furthermore it causes ion leakage from cells but, unlike known antimicrobial peptides (AMPs) with this property, shows no membrane binding behaviour. Finally, its activity remains strictly dependent upon the same receptor proteins (OmpF and TolA) used by full‐length colicin N. This mechanism of rapid membrane disruption, via receptor mediated binding of a soluble peptide, may reveal a new target for the development of highly specific antibacterials.  相似文献   

4.
Bacteria communicate using secreted chemical signaling molecules called autoinducers in a process known as quorum sensing. The quorum‐sensing network of the marine bacterium Vibrio harveyi uses three autoinducers, each known to encode distinct ecological information. Yet how cells integrate and interpret the information contained within these three autoinducer signals remains a mystery. Here, we develop a new framework for analyzing signal integration on the basis of information theory and use it to analyze quorum sensing in V. harveyi. We quantify how much the cells can learn about individual autoinducers and explain the experimentally observed input–output relation of the V. harveyi quorum‐sensing circuit. Our results suggest that the need to limit interference between input signals places strong constraints on the architecture of bacterial signal‐integration networks, and that bacteria probably have evolved active strategies for minimizing this interference. Here, we analyze two such strategies: manipulation of autoinducer production and feedback on receptor number ratios.  相似文献   

5.
The secreted γ‐butyrolactone signalling molecule SVB1 regulates the biosynthesis of jadomycin in Streptomyces venezuelae. Interestingly, this molecule is identical to SCB3, a secreted regulator of secondary metabolism in Streptomyces coelicolor. This is a departure for this class of signalling molecules as there are no previous reports of identical signalling molecules produced in different species. One implication of this work is that different species of bacteria could use shared extracellular signals to co‐ordinate secondary metabolism when and if it is advantageous to do so.  相似文献   

6.
One common mechanism of resistance against antimicrobial peptides in Gram‐negative bacteria is the addition of 4‐amino‐4‐deoxy‐l ‐arabinose (l ‐Ara4N) to the lipopolysaccharide (LPS) molecule. Burkholderia cenocepacia exhibits extraordinary intrinsic resistance to antimicrobial peptides and other antibiotics. We have previously discovered that unlike other bacteria, B. cenocepacia requires l ‐Ara4N for viability. Here, we describe the isolation of B. cenocepacia suppressor mutants that remain viable despite the deletion of genes required for l ‐Ara4N synthesis and transfer to the LPS. The absence of l ‐Ara4N is the only structural difference in the LPS of the mutants compared with that of the parental strain. The mutants also become highly sensitive to polymyxin B and melittin, two different classes of antimicrobial peptides. The suppressor phenotype resulted from a single amino acid replacement (aspartic acid to histidine) at position 31 of LptG, a protein component of the multi‐protein pathway responsible for the export of the LPS molecule from the inner to the outer membrane. We propose that l ‐Ara4N modification of LPS provides a molecular signature required for LPS export and proper assembly at the outer membrane of B. cenocepacia, and is the most critical determinant for the intrinsic resistance of this bacterium to antimicrobial peptides.  相似文献   

7.
There is great interest in explaining how beneficial microbiomes are assembled. Antibiotic‐producing microbiomes are arguably the most abundant class of beneficial microbiome in nature, having been found on corals, arthropods, molluscs, vertebrates and plant rhizospheres. An exemplar is the attine ants, which cultivate a fungus for food and host a cuticular microbiome that releases antibiotics to defend the fungus from parasites. One explanation posits long‐term vertical transmission of Pseudonocardia bacteria, which (somehow) evolve new compounds in arms‐race fashion against parasites. Alternatively, attines (somehow) selectively recruit multiple, non‐coevolved actinobacterial genera from the soil, enabling a ‘multi‐drug’ strategy against parasites. We reconcile the models by showing that when hosts fuel interference competition by providing abundant resources, the interference competition favours the recruitment of antibiotic‐producing (and ‐resistant) bacteria. This partner‐choice mechanism is more effective when at least one actinobacterial symbiont is vertically transmitted or has a high immigration rate, as in disease‐suppressive soils.  相似文献   

8.
Bacteriophage SPN1S infects the pathogenic Gram‐negative bacterium Salmonella typhimurium and expresses endolysin for the release of phage progeny by degrading peptidoglycan of the host cell walls. Bacteriophage SPN1S endolysin exhibits high glycosidase activity against peptidoglycans, resulting in antimicrobial activity against a broad range of outer membrane‐permeabilized Gram‐negative bacteria. Here, we report a crystal structure of SPN1S endolysin, indicating that unlike most endolysins from Gram‐negative bacteria background, the α‐helical protein consists of two modular domains, a large and a small domain, with a concave groove between them. Comparison with other structurally homologous glycoside hydrolases indicated a possible peptidoglycan binding site in the groove, and the presence of a catalytic dyad in the vicinity of the groove, one residue in a large domain and the other in a junction between the two domains. The catalytic dyad was further validated by antimicrobial activity assay against outer membrane‐permeabilized Escherichia coli. The three‐helix bundle in the small domain containing a novel class of sequence motif exhibited binding affinity against outer membrane‐permeabilized E. coli and was therefore proposed as the peptidoglycan‐binding domain. These structural and functional features suggest that endolysin from a Gram‐negative bacterial background has peptidoglycan‐binding activity and performs glycoside hydrolase activity through the catalytic dyad.  相似文献   

9.
Aims: The aim of the present study was to assess the ability of a potentially probiotic strain to resist, in vitro, the effect of intestinal antimicrobial molecules. Methods and results: Strain CIDCA 133 of Lactobacillus delbrueckii subsp lactis was studied. Lactobacillus delbrueckii subsp bulgaricus as well as other gram‐positive and gram‐negative bacteria were used for comparison purposes. The effect of different antimicrobial extracts was determined by diffusion assays, viable counts and growth kinetics. Human‐defensins (hβD1 and hβD2) were also included in the study. Two types of cellular fractions from Caco‐2 cells were tested: (i) cytosolic fractions, obtained by sonication of cultured human enterocytes and (ii) cationic fraction, obtained by batch extraction of the cytosolic fraction with a weak cation exchange resin. In addition, the effect of Caco‐2‐secreted factors was studied. Strain CIDCA 133 was neither inhibited by Caco‐2 secreted, cytosolic nor cationic fractions. Of note, human‐defensins were inactive against strain CIDCA 133. In contrast, a related lactobacilli: Lactobacilli delbrueckii subsp bulgaricus (strain CIDCA 331) and other species of gram‐positive or gram‐negative bacteria were strongly inhibited. Conclusions: Strain CIDCA 133 is able to survive and grow in the presence of enterocyte‐derived antimicrobial molecules. This ability is not a general property of lactobacilli. Significance and Impact of the Study: Results could provide a new insight into the mechanisms of the probiotic effect and encourage further studies on this field. Resistance to antimicrobial peptides can be relevant to understand the interaction of potentially probiotic strains with the host′s immune system. This ability can be also relevant as a selection criterion for new probiotic strains.  相似文献   

10.
The simultaneous utilization of efficient respiration and inefficient fermentation even in the presence of abundant oxygen is a puzzling phenomenon commonly observed in bacteria, yeasts, and cancer cells. Despite extensive research, the biochemical basis for this phenomenon remains obscure. We hypothesize that the outcome of a competition for membrane space between glucose transporters and respiratory chain (which we refer to as economics of membrane occupancy) proteins influences respiration and fermentation. By incorporating a sole constraint based on this concept in the genome‐scale metabolic model of Escherichia coli, we were able to simulate respiro‐fermentation. Further analysis of the impact of this constraint revealed differential utilization of the cytochromes and faster glucose uptake under anaerobic conditions than under aerobic conditions. Based on these simulations, we propose that bacterial cells manage the composition of their cytoplasmic membrane to maintain optimal ATP production by switching between oxidative and substrate‐level phosphorylation. These results suggest that the membrane occupancy constraint may be a fundamental governing constraint of cellular metabolism and physiology, and establishes a direct link between cell morphology and physiology.  相似文献   

11.
Microbial competition for limiting natural resources within a community is thought to be the selective force that promotes biosynthesis of antimicrobial compounds The marine bacterium Streptomyces tenjimariensis produces the antibiotics istamycin A and B under select laboratory culture conditions; presumably these compounds serve an, ecological role under natural conditions. Here we report results of a novel marine microbial competion experiment that examined the impact of co-culture of marine bacteria on istamycin production by S. tenjimariensis. Twelve of the 53 bacterial species tested (i.e., 22.6%) induced Istamycin production; this antibiotic also inhibited growth of the competitor colonies. These results suggest that marine bacterial metabolites, serve an ecological role in countering competitive species.  相似文献   

12.
13.
Immunity against infection with Listeria monocytogenes is not achieved from innate immune stimulation by contact with killed but requires viable Listeria gaining access to the cytosol of infected cells. It has remained ill‐defined how such immune sensing of live Listeria occurs. Here, we report that efficient cytosolic immune sensing requires access of nucleic acids derived from live Listeria to the cytoplasm of infected cells. We found that Listeria released nucleic acids and that such secreted bacterial RNA/DNA was recognized by the cytosolic sensors RIG‐I, MDA5 and STING thereby triggering interferon β production. Secreted Listeria nucleic acids also caused RIG‐I‐dependent IL‐1β‐production and inflammasome activation. The signalling molecule CARD9 contributed to IL‐1β production in response to secreted nucleic acids. In conclusion, cytosolic recognition of secreted bacterial nucleic acids by RIG‐I provides a mechanistic explanation for efficient induction of immunity by live bacteria.  相似文献   

14.
The human gut microbiota is a dense microbial ecosystem with extensive opportunities for bacterial contact-dependent processes such as conjugation and Type VI secretion system (T6SS)-dependent antagonism. In the gut Bacteroidales, two distinct genetic architectures of T6SS loci, GA1 and GA2, are contained on Integrative and Conjugative Elements (ICE). Despite intense interest in the T6SSs of the gut Bacteroidales, there is only a superficial understanding of their evolutionary patterns, and of their dissemination among Bacteroidales species in human gut communities. Here, we combine extensive genomic and metagenomic analyses to better understand their ecological and evolutionary dynamics. We identify new genetic subtypes, document extensive intrapersonal transfer of these ICE to Bacteroidales species within human gut microbiomes, and most importantly, reveal frequent population fixation of these newly armed strains in multiple species within a person. We further show the distribution of each of the distinct T6SSs in human populations and show there is geographical clustering. We reveal that the GA1 T6SS ICE integrates at a minimal recombination site leading to their integration throughout genomes and their frequent interruption of genes, whereas the GA2 T6SS ICE integrate at one of three different tRNA genes. The exclusion of concurrent GA1 and GA2 T6SSs in individual strains is associated with intact T6SS loci and with an ICE-encoded gene. By performing a comprehensive analysis of mobile genetic elements (MGE) in co-resident Bacteroidales species in numerous human gut communities, we identify 74 MGE that transferred to multiple Bacteroidales species within individual gut microbiomes. We further show that only three other MGE demonstrate multi-species spread in human gut microbiomes to the degree demonstrated by the GA1 and GA2 ICE. These data underscore the ubiquity and dissemination of mobile T6SS loci within Bacteroidales communities and across human populations.  相似文献   

15.
A complete cDNA clone encoding secreted IgM molecules was isolated from a spleen cDNA library of rainbow trout (Oncorhynchus mykiss). It encodes the leader peptide, VH, DH, JH, and the whole constant region of the secreted IgM molecule. We also studied the copy number of the IgM gene and an unusual RNA splicing mechanism which generates membrane IgM lacking the CH4 domain in rainbow trout. Amino acid sequence comparison of IgM protein sequences from this fish and other vertebrates indicates that some domains of IgM have evolved at a relatively constant rate. The evolution of salmoid fish including divergence time is discussed.  相似文献   

16.
Paratransgenesis targeting the gut protozoa is being developed as an alternative method for the control of the Formosan subterranean termite (FST). This method involves killing the cellulose‐digesting gut protozoa using a previously developed antiprotozoal peptide consisting of a target specific ligand coupled to an antimicrobial peptide (Hecate). In the future, we intend to genetically engineer termite gut bacteria as “Trojan Horses” to express and spread ligand‐Hecate in the termite colony. The aim of this study was to assess the usefulness of bacteria strains isolated from the gut of FST as “Trojan Horses.” We isolated 135 bacteria from the guts of workers from 3 termite colonies. Sequencing of the 16S rRNA gene identified 20 species. We tested 5 bacteria species that were previously described as part of the termite gut community for their tolerance against Hecate and ligand‐Hecate. Results showed that the minimum concentration required to inhibit bacteria growth was always higher than the concentration required to kill the gut protozoa. Out of the 5 bacteria tested, we engineered Trabulsiella odontotermitis, a termite specific bacterium, to express green fluorescent protein as a proof of concept that the bacteria can be engineered to express foreign proteins. Engineered T. odontotermitis was fed to FST to study if the bacteria are ingested. This feeding experiment confirmed that engineered T. odontotermitis is ingested by termites and can survive in the gut for at least 48 h. Here we report that T. odontotermitis is a suitable delivery and expression system for paratransgenesis in a termite species.  相似文献   

17.
Bacteria of the phylum Bacteroidetes constitute a substantial portion of the human gut microbiota, including symbionts and opportunistic pathogens. How these bacteria coexist and provide colonization resistance to pathogenic strains is not well understood. In this issue of EMBO Reports, Hecht and colleagues describe a mechanism by which strains of Bacteroides fragilis compete with each other for an intestinal niche 1 . Prompted by the observation that B. fragilis populations appear to be dominated by either commensal, non‐toxigenic strains, or by enterotoxigenic, potentially pathogenic strains, the authors investigated mechanisms of competition between these two subsets. In agreement with two recent studies 2 3 , Hecht et al 1 found that competition between B. fragilis strains is dependent on a type‐6 secretion system (T6SS) apparatus, secreted effectors, and immunity genes. They identify a T6SS effector–immunity gene pair that enables a non‐toxigenic strain to competitively exclude enterotoxigenic B. fragilis, thus providing a proof of principle for the use of T6SS‐mediated killing as a therapeutic strategy to eradicate pathogenic strains.  相似文献   

18.
Many reports have stated that flagellated protists in termite guts harbour ectosymbiotic spirochetes on their cell surface. In this study, we describe another bristle-like ectosymbiont affiliated with the order Bacteroidales. The 16S rRNA phylotype Rs-N74 predominates among Bacteroidales clones obtained from the gut of the termite Reticulitermes speratus. An Rs-N74 phylotype-specific probe was designed in this study and used for detection of the corresponding bacteria in the gut by fluorescence in situ hybridization (FISH) analysis. Surprisingly, the signals were detected specifically from the bristle-like 'appendages' of various flagellate species belonging to the genus Dinenympha; these 'appendages' had been believed to be spirochetal ectosymbionts or structures of the protists. The Rs-N74 bacteria attached to the cell surface of the protists by a tip and coexisted with the spirochetal ectosymbionts. An electron micrograph revealed their morphology to be similar to a typical Bacteroidales bacterium. This bacterium is proposed to represent a novel genus and species, 'Candidatus Symbiothrix dinenymphae', phylogenetically affiliated with a cluster consisting exclusively of uncultured strains from termite guts. A Bacteroidales-specific probe for FISH further revealed that this type of symbiosis exists also in various other protists, including parabasalids and oxymonads, and is widespread in termite guts.  相似文献   

19.
Carrion beetles, Nicrophorus vespilloides, are reared on decomposing carrion where larvae are exposed to high populations of carcass‐derived bacteria. Larvae do not become colonized with these bacteria but instead are colonized with the gut microbiome of their parents, suggesting that bacteria in the beetle microbiome outcompete the carcass‐derived species for larval colonization. Here, we test this hypothesis and quantify the fitness consequences of colonization with different bacterial symbionts. First, we show that beetles colonized by their endogenous microbiome produce heavier broods than those colonized with carcass‐bacteria. Next, we show that bacteria from the endogenous microbiome, including Providencia rettgeri and Morganella morganii, are better colonizers of the beetle gut and can outcompete nonendogenous species, including Serratia marcescens and Escherichia coli, during in vivo competition. Finally, we find that Providencia and Morganella provide beetles with colonization resistance against Serratia and thereby reduce Serratia‐induced larval mortality. This effect is eliminated in larvae first colonized by Serratia, suggesting that while competition within the larval gut is determined by priority effects, these effects are less important for Serratia‐induced mortality. Our work suggests that an unappreciated benefit of parental care in N. vespilloides is the social transmission of the microbiome from parents to offspring.  相似文献   

20.
A series of peptide dendrimers and their conjugates with antimicrobial agent FMDP (N3‐(4‐methoxyfumaroyl)‐(S)‐2,3‐diamino‐propanoic acid) were synthesized. The obtained compounds were tested for the antibacterial and antifungal activity. All novel dendrimers displayed much better activity against the tested strains than FMDP itself. Moreover, their conjugates with FMDP also exhibited antimicrobial activity. The most promising molecules were tested against a broad selection of fungal strains. The analysis of their antifungal properties indicates that the examined molecules are efficient growth inhibitors of fluconazole‐resistant hospital‐acquired strains. Moreover, an application of amphiphilic branched peptides such as FMDP carriers suggests that transport mechanism involves more likely the cell membrane perturbation than the mediation of the specific transport proteins. The activity of obtained compounds strongly depends on the specific structure of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号