首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The Report of the Advisory Committee on the Future of the U.S. Space Program, December 1990. N. R. Augustine, Chairman. Obtainable from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.  相似文献   

6.

Background

Grapevine (Vitis vinifera L.) is one of the most important fruit crops in the world and serves as a valuable model for fruit development in woody species. A major breakthrough in grapevine genomics was achieved in 2007 with the sequencing of the Vitis vinifera cv. PN40024 genome. Subsequently, data on structural and functional characterization of grape genes accumulated exponentially. To better exploit the results obtained by the international community, we think that a coordinated nomenclature for gene naming in species with sequenced genomes is essential. It will pave the way for the accumulation of functional data that will enable effective scientific discussion and discovery. The exploitation of data that were generated independently of the genome release is hampered by their heterogeneous nature and by often incompatible and decentralized storage. Classically, large amounts of data describing gene functions are only available in printed articles and therefore remain hardly accessible for automatic text mining. On the other hand, high throughput “Omics” data are typically stored in public repositories, but should be arranged in compendia to better contribute to the annotation and functional characterization of the genes.

Results

With the objective of providing a high quality and highly accessible annotation of grapevine genes, the International Grapevine Genome Project (IGGP) commissioned an international Super-Nomenclature Committee for Grape Gene Annotation (sNCGGa) to coordinate the effort of experts to annotate the grapevine genes. The goal of the committee is to provide a standard nomenclature for locus identifiers and to define conventions for a gene naming system in this paper.

Conclusions

Learning from similar initiatives in other plant species such as Arabidopsis, rice and tomato, a versatile nomenclature system has been developed in anticipation of future genomic developments and annotation issues. The sNCGGa’s first outreach to the grape community has been focused on implementing recommended guidelines for the expert annotators by: (i) providing a common annotation platform that enables community-based gene curation, (ii) developing a gene nomenclature scheme reflecting the biological features of gene products that is consistent with that used in other organisms in order to facilitate comparative analyses.  相似文献   

7.
Mitochondrial gene nomenclature   总被引:1,自引:1,他引:0  
  相似文献   

8.
《朊病毒》2013,7(3-4):197-203
ABSTRACT

Abnormal structural changes of the prion protein (PrP) are the cause of prion disease in a wide range of mammals. However, spontaneous infected cases have not been reported in chicken. Genetic variations of the prion protein gene (PRNP) may impact susceptibility to prion disease but have not been investigated thus far. Because an investigation of the chicken PRNP can improve the understanding of characteristics related to resistance to prion disease, research on the chicken PRNP is highly desirable. In this study, we investigated the genetic characteristics of the chicken PRNP gene. For this, we performed direct sequencing in 106 Dekalb White chickens and analyzed the genotype and allele frequencies of chicken PRNP gene. We found two insertion and deletion polymorphisms in the chicken PRNP: c.163_180delAACCCAGGGTACCCCCAT and c.268_269insC. The former is a U2 hexapeptide deletion polymorphism. Of the 106 samples, 13 (12.26%) were insertion homozygotes, 89 (83.96%) were heterozygotes, and 4 (3.77%) were deletion homozygotes in c.163_180delAACCCAGGGTACCCCCAT. In the c.268_269insC polymorphism, 102 (96.23%) were deletion homozygotes, and 4 (3.77%) were heterozygotes. Insertion homozygotes of c.268_269insC were not detected. Two polymorphisms were in perfect linkage disequilibrium (LD) with a D’ value of 1.0, and three haplotypes were identified. Furthermore, PROVEAN evaluates 163_180delAACCCAGGGTACCCCCAT as ‘deleterious’ with a score of – 13.173. Furthermore, single nucleotide polymorphisms (SNPs) in the open reading frame (ORF) of the PRNP gene were not found in the chicken. To the best of our knowledge, this was the first report on the genetic variations of the chicken PRNP gene.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Guidelines for human gene nomenclature   总被引:17,自引:0,他引:17  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号