首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FtsA is localized to the septum in an FtsZ-dependent manner.   总被引:25,自引:15,他引:10       下载免费PDF全文
The localization of the cell division protein FtsA in E. coli was examined. FtsA was found to localize to the septum in a ring pattern as previously shown for FtsZ. The localization of FtsA was completely dependent on the localization of FtsZ. Under a variety of conditions that prevented formation of the Z ring, FtsA was unable to localize. In mutants where FtsZ forms structures in addition to Z rings, the pattern of FtsA duplicated these structures. These results suggest that the Z ring recruits FtsA to the septum.  相似文献   

2.
ZipA is an essential cell division protein in Escherichia coli that is recruited to the division site early in the division cycle. As it is anchored to the membrane and interacts with FtsZ, it is a candidate for tethering FtsZ filaments to the membrane during the formation of the Z ring. In this study, we have investigated the requirements for ZipA localization to the division site. ZipA requires FtsZ, but not FtsA or FtsI, to be localized, indicating that it is recruited by FtsZ. Consistent with this, apparently normal Z rings are formed in the absence of ZipA. The interaction between FtsZ and ZipA occurs through their carboxy-terminal domains. Although a MalE-ZipA fusion binds to FtsZ filaments, it does not affect the GTPase activity or dynamics of the filaments. These results are consistent with ZipA acting after Z ring formation, possibly to link the membrane to FtsZ filaments during invagination of the septum.  相似文献   

3.
The earliest event in bacterial cell division is the formation of a Z ring, composed of the tubulin-like FtsZ protein, at the division site at midcell. This ring then recruits several other division proteins and together they drive the formation of a division septum between two replicated chromosomes. Here we show that, in addition to forming a cytokinetic ring, FtsZ localizes in a helical-like pattern in vegetatively growing cells of Bacillus subtilis. FtsZ moves rapidly within this helix-like structure. Examination of FtsZ localization in individual live cells undergoing a single cell cycle suggests a new assembly mechanism for Z ring formation that involves a cell cycle-mediated multistep remodelling of FtsZ polymers. Our observations suggest that initially FtsZ localizes in a helical pattern, with movement of FtsZ within this structure occurring along the entire length of the cell. Next, movement of FtsZ in a helical-like pattern is restricted to a central region of the cell. Finally the FtsZ ring forms precisely at midcell. We further show that another division protein, FtsA, shown to interact with FtsZ prior to Z ring formation in B. subtilis, also localizes to similar helical patterns in vegetatively growing cells.  相似文献   

4.
In Escherichia coli, FtsEX, a member of the ABC transporter superfamily, is involved in regulating the assembly and activation of the divisome to couple cell wall synthesis to cell wall hydrolysis at the septum. Genetic studies indicate FtsEX acts on FtsA to begin the recruitment of the downstream division proteins but blocks septal PG synthesis until a signal is received that divisome assembly is complete. However, the details of how FtsEX localizes to the Z ring and how it interacts with FtsA are not clear. Our results show that recruitment of FtsE and FtsX is codependent and suggest that the FtsEX complex is recruited through FtsE interacting with the conserved tail of FtsZ (CCTP), thus adding FtsEX to a growing list of proteins that interacts with the CCTP of FtsZ. Furthermore, we find that the N‐terminus of FtsX is not required for FtsEX localization to the Z ring but is required for its functions in cell division indicating that it interacts with FtsA. Taken together, these results suggest that FtsEX first interacts with FtsZ to localize to the Z ring and then interacts with FtsA to promote divisome assembly and regulate septal PG synthesis.  相似文献   

5.
The earliest stage in cell division in bacteria is the assembly of a Z ring at the division site at midcell. Other division proteins are also recruited to this site to orchestrate the septation process. FtsA is a cytosolic division protein that interacts directly with FtsZ. Its function remains unknown. It is generally believed that FtsA localization to the division site occurs immediately after Z-ring formation or concomitantly with it and that FtsA is responsible for recruiting the later-assembling membrane-bound division proteins to the division site. Here, we report the development of an in vivo chemical cross-linking assay to examine the association between FtsZ and FtsA in Bacillus subtilis cells. We subsequently use this assay in a synchronous cell cycle to show that these two proteins can interact prior to Z-ring formation. We further show that in a B. subtilis strain containing an ftsA deletion, FtsZ localized at regular intervals along the filament but the majority of Z rings were abnormal. FtsA in this organism is therefore critical for the efficient formation of functional Z rings. This is the first report of abnormal Z-ring formation resulting from the loss of a single septation protein. These results suggest that in this organism, and perhaps others, FtsA ensures recruitment of the membrane-bound division proteins by ensuring correct formation of the Z ring.  相似文献   

6.
In Escherichia coli, nine gene products are known to be essential for assembly of the division septum. One of these, FtsL, is a bitopic membrane protein whose precise function is not understood. Here we use fluorescence microscopy to study the subcellular localization of FtsL, both in a wild-type strain and in a merodiploid strain that expresses a GFP-FtsL fusion protein. We show that FtsL localizes to the cell septum where it forms a ring analogous to the cytoplasmic FtsZ ring. FtsL localization is dependent upon the function of FtsZ, FtsA and FtsQ, but not FtsI. In a reverse approach, we use fusions of green fluorescent protein (GFP) to FtsZ, FtsA and ZipA to show that these proteins localize to the division site in an FtsL-independent fashion. We propose that FtsL is a relatively late recruit to the ring structure that mediates septation.  相似文献   

7.
FtsN, a late recruit to the septum in Escherichia coli   总被引:8,自引:5,他引:3  
The localization of FtsN in Escherichia coli was investigated by immunofluorescence microscopy. FtsN is an essential cell division protein with a simple bitopic topology, a short N-terminal cytoplasmic segment fused to a large carboxy periplasmic domain through a single transmembrane domain. FtsN was found to localize to the septum in a ring pattern similar to that observed for FtsZ and FtsA, although the frequency of cells with rings was less. A MalG–FtsN fusion was also localized to the septum, indicating that the information for FtsN localization is supplied by its periplasmic domain. FtsN localization was dependent upon the prior localization of FtsZ and FtsA and required the function of FtsI and FtsQ. Consistent with FtsN functioning after FtsZ, Z rings were observed in a mutant depleted of FtsN.  相似文献   

8.
Cell division in prokaryotes initiates with assembly of the Z‐ring at midcell, which, in Escherichia coli, is tethered to the inner leaflet of the cytoplasmic membrane through a direct interaction with FtsA, a widely conserved actin homolog. The Z‐ring is comprised of polymers of tubulin‐like FtsZ and has been suggested to provide the force for constriction. Here, we demonstrate that FtsA exerts force on membranes causing redistribution of membrane architecture, robustly hydrolyzes ATP and directly engages FtsZ polymers in a reconstituted system. Phospholipid reorganization by FtsA occurs rapidly and is mediated by insertion of a C‐terminal membrane targeting sequence (MTS) into the bilayer and further promoted by a nucleotide‐dependent conformational change relayed to the MTS. FtsA also recruits FtsZ to phospholipid vesicles via a direct interaction with the FtsZ C‐terminus and regulates FtsZ assembly kinetics. These results implicate the actin homolog FtsA in establishment of a Z‐ring scaffold, while directly remodeling the membrane and provide mechanistic insight into localized cell wall remodeling, invagination and constriction at the onset of division.  相似文献   

9.
The Min system, consisting of MinC, MinD, and MinE, plays an important role in localizing the Escherichia coli cell division machinery to midcell by preventing FtsZ ring (Z ring) formation at cell poles. MinC has two domains, MinCn and MinCc, which both bind to FtsZ and act synergistically to inhibit FtsZ polymerization. Binary fission of E. coli usually proceeds symmetrically, with daughter cells at roughly 180° to each other. In contrast, we discovered that overproduction of an artificial MinCc-MinD fusion protein in the absence of other Min proteins induced frequent and dramatic jackknife-like bending of cells at division septa, with cell constriction predominantly on the outside of the bend. Mutations in the fusion known to disrupt MinCc-FtsZ, MinCc-MinD, or MinD-membrane interactions largely suppressed bending division. Imaging of FtsZ-green fluorescent protein (GFP) showed no obvious asymmetric localization of FtsZ during MinCc-MinD overproduction, suggesting that a downstream activity of the Z ring was inhibited asymmetrically. Consistent with this, MinCc-MinD fusions localized predominantly to segments of the Z ring at the inside of developing cell bends, while FtsA (but not ZipA) tended to localize to the outside. As FtsA is required for ring constriction, we propose that this asymmetric localization pattern blocks constriction of the inside of the septal ring while permitting continued constriction of the outside portion.  相似文献   

10.
In most bacteria, the tubulin‐like GTPase FtsZ forms an annulus at midcell (the Z‐ring) which recruits the division machinery and regulates cell wall remodeling. Although both activities require membrane attachment of FtsZ, few membrane anchors have been characterized. FtsA is considered to be the primary membrane tether for FtsZ in bacteria, however in Caulobacter crescentus, FtsA arrives at midcell after stable Z‐ring assembly and early FtsZ‐directed cell wall synthesis. We hypothesized that additional proteins tether FtsZ to the membrane and demonstrate that in C. crescentus, FzlC is one such membrane anchor. FzlC associates with membranes directly in vivo and in vitro and recruits FtsZ to membranes in vitro. As for most known membrane anchors, the C‐terminal peptide of FtsZ is required for its recruitment to membranes by FzlC in vitro and midcell recruitment of FzlC in cells. In vivo, overproduction of FzlC causes cytokinesis defects whereas deletion of fzlC causes synthetic defects with dipM, ftsE and amiC mutants, implicating FzlC in cell wall hydrolysis. Our characterization of FzlC as a novel membrane anchor for FtsZ expands our understanding of FtsZ regulators and establishes a role for membrane‐anchored FtsZ in the regulation of cell wall hydrolysis.  相似文献   

11.
The Escherichia coli Min system contributes to spatial regulation of cytokinesis by preventing assembly of the Z ring away from midcell. MinC is a cell division inhibitor whose activity is spatially regulated by MinD and MinE. MinC has two functional domains of similar size, both of which have division inhibitory activity in the proper context. However, the molecular mechanism of the inhibitory action of either domain is not very clear. Here, we report that the septal localization and division inhibitory activity of MinCC/MinD requires the conserved C-terminal tail of FtsZ. This tail also mediates interaction with two essential division proteins, ZipA and FtsA, to link FtsZ polymers to the membrane. Overproduction of MinCC/MinD displaces FtsA from the Z ring and eventually disrupts the Z ring, probably because it also displaces ZipA. These results support a model for the division inhibitory action of MinC/MinD. MinC/MinD binds to ZipA and FtsA decorated FtsZ polymers located at the membrane through the MinCC/MinD–FtsZ interaction. This binding displaces FtsA and/or ZipA, and more importantly, positions MinCN near the FtsZ polymers making it a more effective inhibitor.  相似文献   

12.
FtsA is an early component of the Z‐ring, the structure that divides most bacteria, formed by tubulin‐like FtsZ. FtsA belongs to the actin family of proteins, showing an unusual subdomain architecture. Here we reconstitute the tethering of FtsZ to the membrane via FtsA's C‐terminal amphipathic helix in vitro using Thermotoga maritima proteins. A crystal structure of the FtsA:FtsZ interaction reveals 16 amino acids of the FtsZ tail bound to subdomain 2B of FtsA. The same structure and a second crystal form of FtsA reveal that FtsA forms actin‐like protofilaments with a repeat of 48 Å. The identical repeat is observed when FtsA is polymerized using a lipid monolayer surface and FtsAs from three organisms form polymers in cells when overexpressed, as observed by electron cryotomography. Mutants that disrupt polymerization also show an elongated cell division phenotype in a temperature‐sensitive FtsA background, demonstrating the importance of filament formation for FtsA's function in the Z‐ring.  相似文献   

13.
van den Ent F  Löwe J 《The EMBO journal》2000,19(20):5300-5307
Bacterial cell division requires formation of a septal ring. A key step in septum formation is polymerization of FtsZ. FtsA directly interacts with FtsZ and probably targets other proteins to the septum. We have solved the crystal structure of FtsA from Thermotoga maritima in the apo and ATP-bound form. FtsA consists of two domains with the nucleotide-binding site in the interdomain cleft. Both domains have a common core that is also found in the actin family of proteins. Structurally, FtsA is most homologous to actin and heat-shock cognate protein (Hsc70). An important difference between FtsA and the actin family of proteins is the insertion of a subdomain in FtsA. Movement of this subdomain partially encloses a groove, which could bind the C-terminus of FtsZ. FtsZ is the bacterial homologue of tubulin, and the FtsZ ring is functionally similar to the contractile ring in dividing eukaryotic cells. Elucidation of the crystal structure of FtsA shows that another bacterial protein involved in cytokinesis is structurally related to a eukaryotic cytoskeletal protein involved in cytokinesis.  相似文献   

14.
The cytoskeletal protein FtsZ polymerizes to a ring structure (Z ring) at the inner cytoplasmic membrane that marks the future division site and scaffolds the division machinery in many bacterial species. FtsZ is known to polymerize in the presence of GTP into single-stranded protofilaments. In vivo, FtsZ polymers become associated with the cytoplasmic membrane via interaction with the membrane-binding proteins FtsA and ZipA. The FtsZ ring structure is highly dynamic and undergoes constantly polymerization and depolymerization processes and exchange with the cytoplasmic pool. In this theoretical study, we consider a scenario of Z ring self-organization via self-enhanced attachment of FtsZ polymers due to end-to-end interactions and lateral interactions of FtsZ polymers on the membrane. With the assumption of exclusively circumferential polymer orientations, we derive coarse-grained equations for the dynamics of the pool of cytoplasmic and membrane-bound FtsZ. To capture stochastic effects expected in the system due to low particle numbers, we simulate our computational model using a Gillespie-type algorithm. We obtain ring- and arc-shaped aggregations of FtsZ polymers on the membrane as a function of monomer numbers in the cell. In particular, our model predicts the number of FtsZ rings forming in the cell as a function of cell geometry and FtsZ concentration. We also calculate the time of FtsZ ring localization to the midplane in the presence of Min oscillations. Finally, we demonstrate that the assumptions and results of our model are confirmed by 3D reconstructions of fluorescently-labeled FtsZ structures in E. coli that we obtained.  相似文献   

15.
During cell division in Gram-negative bacteria, the cell envelope invaginates and constricts at the septum, eventually severing the cell into two compartments, and separating the replicated genetic materials. In Escherichia coli, at least nine essential gene products participate directly in septum formation: FtsA, FtsI, FtsL, FtsK, FtsN, FtsQ, FtsW, FtsZ and ZipA. All nine proteins have been localized to the septal ring, an equatorial ring structure at the division site. We used translational fusions to green fluorescent protein (GFP) to demonstrate that FtsQ, FtsL and FtsI localize to potential division sites in filamentous cells depleted of FtsN, but not in those depleted of FtsK. We also constructed translational fusions of FtsZ, FtsA, FtsQ, FtsL and FtsI to enhanced cyan or yellow fluorescent protein (ECFP or EYFP respectively), GFP variants with different fluorescence spectra. Examination of cells expressing different combinations of the fusions indicated that FtsA, FtsQ, FtsL and FtsI co-localize with FtsZ in filaments depleted of FtsN. These localization results support the model that E. coli cell division proteins assemble sequentially as a multimeric complex at the division site: first FtsZ, then FtsA and ZipA independently of each other, followed successively by FtsK, FtsQ, FtsL, FtsW, FtsI and FtsN.  相似文献   

16.
FtsZ, a bacterial homolog of eukaryotic tubulin, assembles into the Z ring required for cytokinesis. In Escherichia coli, FtsZ interacts directly with FtsA and ZipA, which tether the Z ring to the membrane. We used three-dimensional structured illumination microscopy to compare the localization patterns of FtsZ, FtsA, and ZipA at high resolution in Escherichia coli cells. We found that FtsZ localizes in patches within a ring structure, similar to the pattern observed in other species, and discovered that FtsA and ZipA mostly colocalize in similar patches. Finally, we observed similar punctate and short polymeric structures of FtsZ distributed throughout the cell after Z rings were disassembled, either as a consequence of normal cytokinesis or upon induction of an endogenous cell division inhibitor.  相似文献   

17.
The bacterial actin homologue FtsA has a conserved C-terminal membrane targeting sequence (MTS). Deletion or point mutations in the MTS, such as W408E, were shown previously to inactivate FtsA function and inhibit cell division. Because FtsA binds to the tubulin-like FtsZ protein that forms the Z ring, it is thought that the MTS of FtsA is required, along with the transmembrane protein ZipA, to assemble the Z ring and anchor it to the cytoplasmic membrane. Here, we show that despite its reduced membrane binding, FtsA-W408E could localize to the Z ring and recruit the late cell division protein FtsI, but was defective in self-interaction and recruitment of FtsN, another late cell division protein. These defects could be suppressed by a mutation that stimulates membrane association of FtsA-W408E, or by expressing a tandem FtsA-W408E. Remarkably, the FtsA MTS could be completely replaced with the transmembrane domain of MalF and remain functional for cell division. We propose that FtsA function in cell division depends on additive effects of membrane binding and self-interaction, and that the specific requirement of an amphipathic helix for tethering FtsA to the membrane can be bypassed.  相似文献   

18.
How bacteria coordinate cell growth with division is not well understood. Bacterial cell elongation is controlled by actin–MreB while cell division is governed by tubulin–FtsZ. A ring‐like structure containing FtsZ (the Z ring) at mid‐cell attracts other cell division proteins to form the divisome, an essential protein assembly required for septum synthesis and cell separation. The Z ring exists at mid‐cell during a major part of the cell cycle without contracting. Here, we show that MreB and FtsZ of Escherichia coli interact directly and that this interaction is required for Z ring contraction. We further show that the MreB–FtsZ interaction is required for transfer of cell‐wall biosynthetic enzymes from the lateral to the mature divisome, allowing cells to synthesise the septum. Our observations show that bacterial cell division is coupled to cell elongation via a direct and essential interaction between FtsZ and MreB.  相似文献   

19.
FtsE and FtsX, which are widely conserved homologs of ABC transporters and interact with each other, have important but unknown functions in bacterial cell division. Coimmunoprecipitation of Escherichia coli cell extracts revealed that a functional FLAG-tagged version of FtsE, the putative ATP-binding component, interacts with FtsZ, the bacterial tubulin homolog required to assemble the cytokinetic Z ring and recruit the components of the divisome. This interaction is independent of FtsX, the predicted membrane component of the ABC transporter, which has been shown previously to interact with FtsE. The interaction also occurred independently of FtsA or ZipA, two other E. coli cell division proteins that interact with FtsZ. In addition, FtsZ copurified with FLAG-FtsE. Surprisingly, the conserved C-terminal tail of FtsZ, which interacts with other cell division proteins, such as FtsA and ZipA, was dispensable for interaction with FtsE. In support of a direct interaction with FtsZ, targeting of a green fluorescent protein (GFP)-FtsE fusion to Z rings required FtsZ, but not FtsA. Although GFP-FtsE failed to target Z rings in the absence of ZipA, its localization was restored in the presence of the ftsA* bypass suppressor, indicating that the requirement for ZipA is indirect. Coexpression of FLAG-FtsE and FtsX under certain conditions resulted in efficient formation of minicells, also consistent with an FtsE-FtsZ interaction and with the idea that FtsE and FtsX regulate the activity of the divisome.  相似文献   

20.
PlsX is a central enzyme of phospholipid synthesis in bacteria, converting acyl‐ACP to acyl‐phosphate on the pathway to phosphatidic acid formation. PlsX has received attention because it plays a key role in the coordination of fatty acid and phospholipid synthesis. Recently, PlsX was also suggested to coordinate membrane synthesis with cell division in Bacillus subtilis. Here, we have re‐investigated the cell biology of PlsX and determined that the enzyme is uniformly distributed on the membrane of most cells, but occasionally appears as membrane foci as well. Foci and homogenous patterns seem freely interconvertible but the prevalence of the uniform staining suggests that PlsX does not need to localize to specific sites to function correctly. We also investigated the relationship between PlsX and the divisome. In contrast to previous observations, PlsX's foci showed no obvious periodicity of localization and did not colocalize with the divisome. Furthermore, depletion of PlsX did not affect cell division if phospholipid synthesis is maintained by an alternative enzyme. These results suggest that coordination between division and membrane synthesis may not require physical or functional interactions between the divisome and phospholipid synthesis enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号