首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron and copper are transition metals that can be toxic to cells due to their abilities to react with peroxide to generate hydroxyl radical. Ferritins and metallothioneins are known to sequester intracellular iron and copper respectively. The Lyme disease pathogen Borrelia burgdorferi does not require iron, but its genome encodes a ferritin‐like Dps (D NA‐binding p rotein from s tarved bacteria) molecule, which has been shown to be important for the spirochaete's persistence in the tick and subsequent transmission to a new host. Here, we show that the c arboxyl‐terminal c ysteine‐r ich (CCR) domain of this protein functions as a copper‐binding metallothionein. This novel fusion between Dps and metallothionein is unique to and conserved in all Borrelia species. We term this molecule BicA for B orrelia i ron‐ and c opper‐binding protein A . An isogenic mutant lacking BicA had significantly reduced levels of iron and copper and was more sensitive to iron and copper toxicity than its parental strain. Supplementation of the medium with iron or copper rendered the spirochaete more susceptible to peroxide killing. These data suggest that an important function of BicA is to detoxify excess iron and copper the spirochaete may encounter during its natural life cycle through a tick vector and a vertebrate host.  相似文献   

2.
The iron‐sulfur protein 1 (Isu1) and the J‐type co‐chaperone Jac1 from yeast are part of a huge ATP‐dependent system, and both interact with Hsp70 chaperones. Interaction of Isu1 and Jac1 is a part of the iron‐sulfur cluster biogenesis system in mitochondria. In this study, the structure and dynamics of the yeast Isu1–Jac1 complex has been modeled. First, the complete structure of Isu1 was obtained by homology modeling using the I‐TASSER server and YASARA software and thereafter tested for stability in the all‐atom force field AMBER. Then, the known experimental structure of Jac1 was adopted to obtain initial models of the Isu1–Jac1 complex by using the ZDOCK server for global and local docking and the AutoDock software for local docking. Three most probable models were subsequently subjected to the coarse‐grained molecular dynamics simulations with the UNRES force field to obtain the final structures of the complex. In the most probable model, Isu1 binds to the left face of the Γ‐shaped Jac1 molecule by the β‐sheet section of Isu1. Residues L105, L109, and Y163 of Jac1 have been assessed by mutation studies to be essential for binding (Ciesielski et al., J Mol Biol 2012; 417:1–12). These residues were also found, by UNRES/molecular dynamics simulations, to be involved in strong interactions between Isu1 and Jac1 in the complex. Moreover, N95, T98, P102, H112, V159, L167, and A170 of Jac1, not yet tested experimentally, were also found to be important in binding. Proteins 2015; 83:1414–1426. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Process of Pb2 accumulation in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Most of the Pb2+ taken up by Saccharomyces cerevisae was deposited in the inner part of the cells after 2 h. In the Pb2 accumulation experiments, the time to reach an equilibrium state was significantly shortened from 96 h to 24 h as the cell dry weight increased from 0.56 g/l to 5.18 g/l. The penetration time of Pb2+ to reach on the interacellular region (2 h) was quite different from that on the extracellular region (3 min). In the case of S. cerevisiae, the first step which a Pb2+ binds to cell wall within 3[f]5 min is metabolism-independent and the second step within 24 h is metabolism-dependent followed by the third step which is metabolism-dependent or -independent after 24 h.  相似文献   

4.
5.
6.
For several years we have been investigating combinations of chemicals for their ability to induce aneuploidy. Earlier published results indicated that combinations of certain chemicals showed a potentiation effect while other combinations did not. We have continued to explore this phenomenon and report additional findings in this communication. Combinations of ethyl acetate and methyl ethyl ketone showed a potentiation effect as did 1-methyl-2-pyrrolidinone-nocodazole combinations. Combinations that did not show a potentiation effect were 2-pyrrolidinone-nocodazole and 1-methyl-2-pyrrolidinone-ethyl acetate. We also found that nocodazole, which is a potent inducer of aneuploidy in yeast extract-peptone-dextrose (YEPD) medium but not in synthetic complete (SC) medium, showed a potentiation effect with ethyl acetate in SC medium. This effect in SC medium is similar to that previously reported for nocodazole with ethyl acetate in YEPD medium. When nocodazole was dissolved in 1-methyl-2-pyrrolidinone as a concentrated stock solution, a potentiation effect occurred even at low concentrations of the solvent.  相似文献   

7.
8.
9.
10.
D‐Glucaric acid can be produced as a value‐added chemical from biomass through a de novo pathway in Escherichia coli. However, previous studies have identified pH‐mediated toxicity at product concentrations of 5 g/L and have also found the eukaryotic myo‐inositol oxygenase (MIOX) enzyme to be rate‐limiting. We ported this pathway to Saccaromyces cerevisiae, which is naturally acid‐tolerant and evaluate a codon‐optimized MIOX homologue. We constructed two engineered yeast strains that were distinguished solely by their MIOX gene – either the previous version from Mus musculus or a homologue from Arabidopsis thaliana codon‐optimized for expression in S. cerevisiae – in order to identify the rate‐limiting steps for D‐glucaric acid production both from a fermentative and non‐fermentative carbon source. myo‐Inositol availability was found to be rate‐limiting from glucose in both strains and demonstrated to be dependent on growth rate, whereas the previously used M. musculus MIOX activity was found to be rate‐limiting from glycerol. Maximum titers were 0.56 g/L from glucose in batch mode, 0.98 g/L from glucose in fed‐batch mode, and 1.6 g/L from glucose supplemented with myo‐inositol. Future work focusing on the MIOX enzyme, the interplay between growth and production modes, and promoting aerobic respiration should further improve this pathway.  相似文献   

11.
This paper examines the effects of ionic gold on Saccharomyces cerevisiae, as determined by long-term (growth in gold-containing media) and short-term interactions (H+ efflux activity). An increasing gold concentration inhibited growth and at <0.2 mM Au, growth was not observed. Transmission electron microscopy revealed no differences in ultrastructure but fine electron dense particles were observed in unstained preparations from gold-containing medium. After glucose addition (to 10mM) to starved suspensions of S. cerevisiae, glucose-dependent reduction of external pH occurred as the cells extruded protons. In the presence of increasing gold concentrations, the lag time before proton extrusion did not change but the rate and duration decreased significantly with a marked influence on proton efflux rate being observed at 10 M. Extension of preincubation time of yeast cells in gold-containing medium resulted in a decreasing proton efflux rate and colloidal phase formation in the cell suspensions, the time between gold addition and the beginning of colloidal phase formation depending on the gold concentration used. Both Ca and Mg enhanced the inhibitory effect of gold on the yeast cells with Ca showing a stronger inhibitory effect than Mg.  相似文献   

12.
Qian J  West AH  Cook PF 《Biochemistry》2006,45(39):12136-12143
Homocitrate synthase (acetyl-coenzyme A:2-ketoglutarate C-transferase; E.C. 2.3.3.14) catalyzes the condensation of AcCoA and alpha-ketoglutarate to give homocitrate and CoA. The enzyme was found to be a Zn-containing metalloenzyme using inductively coupled plasma mass spectrometry. Dead-end analogues of alpha-ketoglutarate were used to obtain information on the topography of the alpha-ketoglutarate binding site. The alpha-carboxylate and alpha-oxo groups of alpha-ketoglutarate are required for optimum binding to coordinate to the active site Zn. Optimum positioning of the alpha-carboxylate, alpha-oxo, and gamma-carboxylate of alpha-ketoglutarate is likely mimicked by the location in space of the 2-carboxylate, pyridine nitrogen, and 4 carboxylate of pyridine 2,4-dicarboxylate. The pH dependence of the kinetic parameters was determined to obtain information on the chemical mechanism of homocitrate synthase. The V profile is bell shaped with slopes of 1 and -1, giving pKa values of 6.7 and 8.0, while V/K(AcCoA) exhibits a slope of 2 on the acidic side with an average pKa value of 6.6 and a slope of -2 on basic side of the profile with an average pKa value of 8.2. The V/K(alpha-Kg) pH-rate profile exhibits a single pKa of 6.9 on the acidic side and two on the basic side with an average value of 7.8. The pH dependence of the Ki for glyoxylate, a competitive inhibitor vs alpha-ketoglutarate, gives a pKa of 7.1 for a group, required to be protonated for optimum binding. Data suggest a chemical mechanism for the enzyme in which alpha-ketoglutarate first binds to the active site Zn via its alpha-carboxylate and alpha-oxo groups, followed by acetyl-CoA. A general base then accepts a proton from the methyl of acetyl-CoA, and a general acid protonates the carbonyl of alpha-ketoglutarate in the formation of homocitryl-CoA. The general acid then acts as a base in deprotonating Zn-OH2 in the hydrolysis of homocitryl-CoA to give homocitrate and CoA. A solvent deuterium kinetic isotope effect of 1 is measured for homocitrate synthase, while a small pH-independent primary kinetic deuterium isotope effect (approximately 1.3) is observed using deuterioacetyl-CoA. Data suggest rate-limiting condensation to form the alkoxide of homocitryl-CoA, followed by hydrolysis to give products.  相似文献   

13.
14.
15.
Cyanophycin [multi-L-arginyl-poly(L-aspartic acid) (CGP)] was, for the first time, produced in yeast. As yeasts are very important production organisms in biotechnology, it was determined if CGP can be produced in two different strains of Saccharomyces cerevisiae. The episomal vector systems pESC (with the galactose-inducible promoter GAL1) and pYEX-BX (with the copper ion-inducible promoter CUP1) were chosen to express the cyanophycin synthetase gene from the cyanobacterium Synechocystis sp. strain PCC 6308 (cphA(6308)) in yeast. Expression experiments with transgenic yeasts revealed that the use of the CUP1 promoter is much more efficient for CGP production than the GAL1 promoter. As observed by electrophoresis of isolated CGP in sodium dodecyl sulfate-polyacrylamide gels, the yeast strains produced two different types of polymer: the water-soluble and the water-insoluble CGP were observed as major and minor forms of the polymer, respectively. A maximum CGP content of 6.9% (wt/wt) was detected in the cells. High-performance liquid chromatography analysis showed that the isolated polymers consisted mainly of the two amino acids aspartic acid and arginine and that, in addition, a minor amount (2 mol%) of lysine was present. Growth of transgenic yeasts in the presence of 15 mM lysine resulted in an incorporation of up to 10 mol% of lysine into CGP. Anti-CGP antibodies generated against CGP isolated from Escherichia coli TOP10 harboring cphA(6308) reacted with insoluble CGP but not with soluble CGP, if applied in Western or dot blots.  相似文献   

16.
A re-annotation of the Saccharomyces cerevisiae genome   总被引:5,自引:0,他引:5  
Discrepancies in gene and orphan number indicated by previous analyses suggest that S. cerevisiae would benefit from a consistent re-annotation. In this analysis three new genes are identified and 46 alterations to gene coordinates are described. 370 ORFs are defined as totally spurious ORFs which should be disregarded. At least a further 193 genes could be described as very hypothetical, based on a number of criteria. It was found that disparate genes with sequence overlaps over ten amino acids (especially at the N-terminus) are rare in both S. cerevisiae and Sz. pombe. A new S. cerevisiae gene number estimate with an upper limit of 5804 is proposed, but after the removal of very hypothetical genes and pseudogenes this is reduced to 5570. Although this is likely to be closer to the true upper limit, it is still predicted to be an overestimate of gene number. A complete list of revised gene coordinates is available from the Sanger Centre (S. cerevisiae reannotation: ftp://ftp/pub/yeast/SCreannotation).  相似文献   

17.
Aims: Saccharomyces cerevisiae is a safe micro‐organism used in fermentation industry. 1,3‐Propanediol is an important chemical widely used in polymer production, but its availability is being restricted owing to its expensively chemical synthesis. The aim of this study is to engineer a S. cerevisiae strain that can produce 1,3‐propanediol at low cost. Methods and Results: By using d ‐glucose as a feedstock, S. cerevisiae could produce glycerol, but not 1,3‐propanediol. In this study, we have cloned two genes yqhD and dhaB required for the production of 1,3‐propanediol from glycerol, and integrated them into the chromosome of S. cerevisiae W303‐1A by Agrobacterium tumefaciens‐mediated transformation. Both genes yqhD and dhaB functioned in the engineered S. cerevisiae and led to the production of 1,3‐propanediol from d ‐glucose. Conclusion: Saccharomyces cerevisiae can be engineered to produce 1,3‐propanediol from low‐cost feedstock d ‐glucose. Significance and Impact of the Study: To our knowledge, this is the first report on developing S. cerevisiae to produce 1,3‐propanediol by using A. tumefaciens‐mediated transformation. This study might lead to a safe and cost‐efficient method for industrial production of 1,3‐propanediol.  相似文献   

18.
The cells of Saccharomyces cerevisiae accumulate inorganic polyphosphate (polyP) when reinoculated on a phosphate-containing medium after phosphorus starvation. Total polyP accumulation was similar at cultivation on both glucose and ethanol. Five separate fractions of polyP: acid-soluble fraction polyP1, salt-soluble fraction polyP2, weakly alkali-soluble fraction polyP3, alkali-soluble fraction polyP4, and polyP5, have been obtained from the cells grown on glucose and ethanol under phosphate overplus. The dynamics of polyP fractions depend on a carbon source. The accumulation rates for fractions polyP2 and polyP4 were independent of the carbon source. The accumulation rates of polyP1 and polyP3 were higher on glucose, while fraction polyP5 accumulated faster on ethanol. As to the maximal polyP levels, they were independent of the carbon source for fractions polyP2, polyP3, and polyP4. The maximal level of fraction polyP1 was higher on glucose than on ethanol, but the level of fraction polyP5 was higher on ethanol. It was assumed that accumulation of separate polyP fractions has a metabolic interrelation with different energy-providing pathways. The polyphosphate nature of fraction polyP5 was demonstrated for the first time by 31P nuclear magnetic resonance spectroscopy, enzymatic assay, and electrophoresis.  相似文献   

19.
Several factors may control trehalose and glycogen synthesis, like the glucose flux, the growth rate, the intracellular glucose-6-phosphate level and the glucose concentration in the medium. Here, the possible relation of these putative inducers to reserve carbohydrate accumulation was studied under well-defined growth conditions in nitrogen-limited continuous cultures. We showed that the amounts of accumulated trehalose and glycogen were regulated by the growth rate imposed on the culture, whereas other implicated inducers did not exhibit a correlation with reserve carbohydrate accumulation. Trehalose accumulation was induced at a dilution rate (D)相似文献   

20.
Summary Cu2+ accumulation byS. cerevisiae resulted in rapid release of 70% of cellular K+, followed by a slower release of approximately 60% of cellular Mg2+, but little loss of Ca2+. Co2+ was accumulated in smaller quantities and caused a smaller loss of physiological cations than either Cu2+ or Cd2+. Mg2+ release during copper accumulation was maximal at pH 6. Mg2+ release during Cu2+ accumulation increased with temperature and salinity of the suspension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号