首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In bacterial plasmids, Rep proteins initiate DNA replication by undergoing a structural transformation coupled to dimer dissociation. Amyloidogenesis of the ‘winged-helix’ N-terminal domain of RepA (WH1) is triggered in vitro upon binding to plasmid-specific DNA sequences, and occurs at the bacterial nucleoid in vivo. Amyloid fibers are made of distorted RepA-WH1 monomers that assemble as single or double intertwined tubular protofilaments. RepA-WH1 causes in E. coli an amyloid proteinopathy, which is transmissible from mother to daughter cells, but not infectious, and enables conformational imprinting in vitro and in vivo; i.e. RepA-WH1 is a ‘prionoid’. Microfluidics allow the assessment of the intracellular dynamics of RepA-WH1: bacterial lineages maintain two types (strains-like) of RepA-WH1 amyloids, either multiple compact cytotoxic particles or a single aggregate with the appearance of a fluidized hydrogel that it is mildly detrimental to growth. The Hsp70 chaperone DnaK governs the phase transition between both types of RepA-WH1 aggregates in vivo, thus modulating the vertical propagation of the prionoid. Engineering chimeras between the Sup35p/[PSI+] prion and RepA-WH1 generates [REP-PSI+], a synthetic prion exhibiting strong and weak phenotypic variants in yeast. These recent findings on a synthetic, self-contained bacterial prionoid illuminate central issues of protein amyloidogenesis.  相似文献   

2.
Protein amyloids arise from the conformational conversion and assembly of a soluble protein into fibrilar aggregates with a crossed β‐sheet backbone. Amyloid aggregates are able to replicate by acting as a template for the structural transformation and accretion of further protein molecules. In physicochemical terms, amyloids arguably constitute the simplest self‐replicative macromolecular assemblies. Similarly to the mammalian proteins PrP and α‐synuclein, the winged‐helix dimerization (WH1) domain of the bacterial, plasmid‐encoded protein RepA can assemble into amyloid fibres upon binding to DNA in vitro. Here we report that a hyper‐amyloidogenic functional variant (A31V) of RepA, fused to a red fluorescent protein, causes an amyloid proteinopathy in Escherichia coli with the following features: (i) in the presence of multiple copies of the specific DNA sequence opsp, WH1(A31V) accumulates as cytoplasmatic inclusions segregated from the nucleoid; (ii) such aggregates are amyloid in nature; (iii) bacteria carrying the amyloid inclusions age, exhibiting a fivefold expanded generation time; (iv) before cytokinesis, small inclusions are assembled de novo and transferred to the daughter cells, in which transmission failures cure amyloidosis; and (v) in the absence of inducer DNA, purified cellular WH1(A31V) inclusions seed amyloid fibre growth in vitro from the soluble protein. RepA‐WH1 is a suitable bacterial model system for amyloid proteinopathies.  相似文献   

3.
Cross‐beta fibrous protein aggregates (amyloids and amyloid‐based prions) are found in mammals (including humans) and fungi (including yeast), and are associated with both diseases and heritable traits. The Hsp104/70/40 chaperone machinery controls propagation of yeast prions. The Hsp70 chaperones Ssa and Ssb show opposite effects on [PSI+], a prion form of the translation termination factor Sup35 (eRF3). Ssb is bound to translating ribosomes via ribosome‐associated complex (RAC), composed of Hsp40‐Zuo1 and Hsp70‐Ssz1. Here we demonstrate that RAC disruption increases de novo prion formation in a manner similar to Ssb depletion, but interferes with prion propagation in a manner similar to Ssb overproduction. Release of Ssb into the cytosol in RAC‐deficient cells antagonizes binding of Ssa to amyloids. Thus, propagation of an amyloid formed because of lack of ribosome‐associated Ssb can be counteracted by cytosolic Ssb, generating a feedback regulatory circuit. Release of Ssb from ribosomes is also observed in wild‐type cells during growth in poor synthetic medium. Ssb is, in a significant part, responsible for the prion destabilization in these conditions, underlining the physiological relevance of the Ssb‐based regulatory circuit.  相似文献   

4.
Yeast prions require a core set of chaperone proteins including Sis1, Hsp70 and Hsp104 to generate new amyloid templates for stable propagation, yet emerging studies indicate that propagation of some prions requires additional chaperone activities, demonstrating chaperone specificity beyond the common amyloid requirements. To comprehensively assess such prion‐specific requirements for the propagation of the [URE3] prion variant [URE3‐1], we screened 12 yeast cytosolic J‐proteins, and here we report a novel role for the J‐protein Swa2/Aux1. Swa2 is the sole yeast homolog of the mammalian protein auxilin, which, like Swa2, functions in vesicle‐mediated endocytosis by disassembling the structural lattice formed by the protein clathrin. We found that, in addition to Sis1, [URE3‐1] is specifically dependent upon Swa2, but not on any of the 11 other J‐proteins. Further, we show that [URE3‐1] propagation requires both a functional J‐domain and the tetratricopeptide repeat (TPR) domain, but surprisingly does not require Swa2‐clathrin binding. Because the J‐domain of Swa2 can be replaced with the J‐domains of other proteins, our data strongly suggest that prion‐chaperone specificity arises from the Swa2 TPR domain and supports a model where Swa2 acts through Hsp70, most likely to provide additional access points for Hsp104 to promote prion template generation.  相似文献   

5.
A baffling aspect of metazoan proteostasis is the lack of an Hsp104 ortholog that rapidly disaggregates and reactivates misfolded polypeptides trapped in stress induced disordered aggregates, preamyloid oligomers, or amyloid fibrils. By contrast, in bacteria, protozoa, chromista, fungi, and plants, Hsp104 orthologs are highly conserved and confer huge selective advantages in stress tolerance. Moreover, in fungi, the amyloid remodeling activity of Hsp104 has enabled deployment of prions for various beneficial modalities. Thus, a longstanding conundrum has remained unanswered: how do metazoan cells renature aggregated proteins or resolve amyloid fibrils without Hsp104? Here, we highlight recent advances that unveil the metazoan protein-disaggregase machinery, comprising Hsp110, Hsp70, and Hsp40, which synergize to dissolve disordered aggregates, but are unable to rapidly solubilize stable amyloid fibrils. However, Hsp110, Hsp70, and Hsp40 exploit the slow monomer exchange dynamics of amyloid, and can slowly depolymerize amyloid fibrils from their ends in a manner that is stimulated by small heat shock proteins. Upregulation of this system could have key therapeutic applications in various protein-misfolding disorders. Intriguingly, yeast Hsp104 can interface with metazoan Hsp110, Hsp70, and Hsp40 to rapidly eliminate disease associated amyloid. Thus, metazoan proteostasis is receptive to augmentation with exogenous disaggregases, which opens a number of therapeutic opportunities.  相似文献   

6.
The intricate complexity at the molecular and cellular levels of the processes leading to the development of amyloid proteinopathies is somehow counterbalanced by their common, universal structural basis. The later has fueled the quest for suitable model systems to study protein amyloidosis under quasi-physiological conditions in vitro and in simpler organisms in vivo. Yeast prions have provided several of such model systems, yielding invaluable insights on amyloid structure, dynamics and transmission. However, yeast prions, unlike mammalian PrP, do not elicit any proteinopathy. We have recently reported that engineering RepA-WH1, a bacterial DNA-toggled protein conformational switch (dWH1→mWH1) sharing some analogies with nucleic acid-promoted PrPC→PrPSc replication, enables control on protein amyloidogenesis in vitro. Furthermore, RepA-WH1 gives way to a non-infectious, vertically-transmissible (from mother to daughter cells) amyloid proteinopathy in Escherichia coli. RepA-WH1 amyloid aggregates efficiently promote aging in bacteria, which exhibit a drastic lengthening in generation time, a limited number of division cycles and reduced fitness. The RepA-WH1 prionoid opens a direct means to untangle the general pathway(s) for protein amyloidosis in a host with reduced genome and proteome.Key words: RepA-WH1, bacterial prionoid, synthetic prionoid, amyloid proteinopathy, aging in bacteriaThe development of suitable model systems for the study of the complex neurodegenerative and systemic human diseases caused by the aggregation of proteins into amyloid cross-β assemblies has been successfully attempted in different ways.1 From the point of view of the macromolecules involved, besides those proteins directly involved in amyloid diseases (Alzheimer''s β-amyloid and Tau, Creutzfeldt-Jakob''s PrP, Parkinson''s α-synuclein, Huntington''s huntingtin or β2-microglobulin in dialysis-related amyloidosis), an ever increasing number of disease-unrelated proteins can be forced to unfold, and subsequently assemble, as amyloids under extreme, non-physiological physicochemical conditions. Both kinds of model proteins have been crucial to establish our current understanding of the common molecular basis for protein amyloidogenesis.1 At the organisms side, although animal models, most notably mice, have returned invaluable information on protein amyloidosis, the complexity of the intricate regulatory and biochemical networks inherent to metazoans and their cultured cells, has hampered the outlining of a clear scenario on the mechanism(s) leading to cytotoxicity. Cytotoxicity can arise either from properties common to most amyloidogenic proteins, such as targeting of cell membranes by amyloid oligomers or co-aggregation of essential cell factors, or through pathways particular to each protein and its associated disease.2 The key to such a riddle relies on comprehensive systems biology analyses, but also on resorting to experimental models with their number of potential variables (proteins and their interactions) drastically reduced, but yet showing the same (cytotoxic) response.Since the discovery of the Ure2p/[URE3+] and Sup35p/[PSI+] prions in yeast, these (relatively) simple eukaryotic microorganisms have been instrumental in addressing the molecular basis for amyloid conformational templating, structural polymorphism and cell-to-cell transmissibility.35 However, two limitations to the applicability of yeast prions as universal models for amyloidosis are noteworthy: (1) the amyloidogenic sequence stretches in yeast prions are consistently Gln/Asn-rich, unlike most proteins involved in amyloid proteinopathies (which bear hydrophobic stretches) with the exception of the proteins involved in Huntington disease and in related ataxias; (2) even more importantly, while yeast prions are the epigenetic determinants of distinct, mildly advantageous phenotypes that improve adaptability to environmental challenges,6,7 they are not the causative agents of a proteinopathy in yeast albeit, when overexpressed, Sup35p/[PSI+] becomes detrimental for cell growth. Although this prion has recently been successfully propagated in Escherichia coli,8 it still does not behave as a proper pathogenic agent in this microorganism. Natural amyloids have also been described and characterized in bacteria such as E. coli (curli/CsgA)9 and Pseudomonas (FapC),10 but, invariantly, they are extracellularly secreted and functional in scaffolding cellular consortia such as biofilms. A case apart is posed by inclusion bodies, intracellular protein aggregates accumulated in bacterial cytoplasm upon heterologous expression of recombinant proteins, which exhibit some amyloid features11 but with a discrete detrimental effect on cell fitness.12,13  相似文献   

7.
The amyloid‐based prions of Saccharomyces cerevisiae are heritable aggregates of misfolded proteins, passed to daughter cells following fragmentation by molecular chaperones including the J‐protein Sis1, Hsp70 and Hsp104. Overexpression of Hsp104 efficiently cures cell populations of the prion [PSI+] by an alternative Sis1‐dependent mechanism that is currently the subject of significant debate. Here, we broadly investigate the role of J‐proteins in this process by determining the impact of amyloid polymorphisms (prion variants) on the ability of well‐studied Sis1 constructs to compensate for Sis1 and ask whether any other S. cerevisiae cytosolic J‐proteins are also required for this process. Our comprehensive screen, examining all 13 members of the yeast cytosolic/nuclear J‐protein complement, uncovered significant variant‐dependent genetic evidence for a role of Apj1 (antiprion DnaJ) in this process. For strong, but not weak [PSI+] variants, depletion of Apj1 inhibits Hsp104‐mediated curing. Overexpression of either Apj1 or Sis1 enhances curing, while overexpression of Ydj1 completely blocks it. We also demonstrated that Sis1 was the only J‐protein necessary for the propagation of at least two weak [PSI+] variants and no J‐protein alteration, or even combination of alterations, affected the curing of weak [PSI+] variants, suggesting the possibility of biochemically distinct, variant‐specific Hsp104‐mediated curing mechanisms.  相似文献   

8.
Yeast prions are a powerful model for understanding the dynamics of protein aggregation associated with a number of human neurodegenerative disorders. The AAA+ protein disaggregase Hsp104 can sever the amyloid fibrils produced by yeast prions. This action results in the propagation of "seeds" that are transmitted to daughter cells during budding. Overexpression of Hsp104 eliminates the [PSI+] prion but not other prions. Using biochemical methods we identified Hsp104 binding sites in the highly charged middle domain of Sup35, the protein determinant of [PSI+]. Deletion of a short segment of the middle domain (amino acids 129-148) diminishes Hsp104 binding and strongly affects the ability of the middle domain to stimulate the ATPase activity of Hsp104. In yeast, [PSI+] maintained by Sup35 lacking this segment, like other prions, is propagated by Hsp104 but cannot be cured by Hsp104 overexpression. These results provide new insight into the enigmatic specificity of Hsp104-mediated curing of yeast prions and sheds light on the limitations of the ability of Hsp104 to eliminate aggregates produced by other aggregation-prone proteins.  相似文献   

9.
Prion-like self-perpetuating conformational conversion of proteins is involved in both transmissible neurodegenerative diseases in mammals and non-Mendelian inheritance in yeast. The transmissibility of amyloid-like aggregates is dependent on the stoichiometry of chaperones such as heat shock proteins (Hsps), including disaggregases. To provide the mechanistic underpinnings of the formation and persistence of prefibrillar amyloid seeds, we investigated the role of substoichiometric Hsp104 on the in vitro amyloid aggregation of the prion domain (NM-domain) of Saccharomyces cerevisiae Sup35. At low substoichiometric concentrations, we show Hsp104 exhibits a dual role: it considerably accelerates the formation of prefibrillar species by shortening the lag phase but also prolongs their persistence by introducing unusual kinetic halts and delaying their conversion into mature amyloid fibers. Additionally, Hsp104-modulated amyloid species displayed a better seeding capability compared to NM-only amyloids. Using biochemical and biophysical tools coupled with site-specific dynamic readouts, we characterized the distinct structural and dynamical signatures of these amyloids. We reveal that Hsp104-remodeled amyloidogenic species are compositionally diverse in prefibrillar aggregates and are packed in a more ordered fashion compared to NM-only amyloids. Finally, we show these Hsp104-remodeled, conformationally distinct NM aggregates display an enhanced autocatalytic self-templating ability that might be crucial for phenotypic outcomes. Taken together, our results demonstrate that substoichiometric Hsp104 promotes compositional diversity and conformational modulations during amyloid formation, yielding effective prefibrillar seeds that are capable of driving prion-like Sup35 propagation. Our findings underscore the key functional and pathological roles of substoichiometric chaperones in prion-like propagation.  相似文献   

10.
Amyloid fibrils are fibrillar deposits of denatured proteins associated with amyloidosis and are formed by a nucleation and growth mechanism. We revisited an alternative and classical view of amyloid fibrillation: amyloid fibrils are crystal‐like precipitates of denatured proteins formed above solubility upon breaking supersaturation. Various additives accelerate and then inhibit amyloid fibrillation in a concentration‐dependent manner, suggesting that the combined effects of stabilizing and destabilizing forces affect fibrillation. Heparin, a glycosaminoglycan and anticoagulant, is an accelerator of fibrillation for various amyloidogenic proteins. By using β2‐microglobulin, a protein responsible for dialysis‐related amyloidosis, we herein examined the effects of various concentrations of heparin on fibrillation at pH 2. In contrast to previous studies that focused on accelerating effects, higher concentrations of heparin inhibited fibrillation, and this was accompanied by amorphous aggregation. The two‐step effects of acceleration and inhibition were similar to those observed for various salts. The results indicate that the anion effects caused by sulfate groups are one of the dominant factors influencing heparin‐dependent fibrillation, although the exact structures of fibrils and amorphous aggregates might differ between those formed by simple salts and matrix‐forming heparin. We propose that a conformational phase diagram, accommodating crystal‐like amyloid fibrils and glass‐like amorphous aggregates, is important for understanding the effects of various additives.  相似文献   

11.
The eye lens protein γD‐crystallin contributes to cataract formation in the lens. In vitro experiments show that γD‐crystallin has a high propensity to form amyloid fibers when denatured, and that denaturation by acid or UV‐B photodamage results in its C‐terminal domain forming the β‐sheet core of amyloid fibers. Here, we show that thermal denaturation results in sheet‐like aggregates that contain cross‐linked oligomers of the protein, according to transmission electron microscopy and SDS‐PAGE. We use two‐dimensional infrared spectroscopy to show that these aggregates have an amyloid‐like secondary structure with extended β‐sheets, and use isotope dilution experiments to show that each protein contributes approximately one β‐strand to each β‐sheet in the aggregates. Using segmental 13C labeling, we show that the organization of the protein's two domains in thermally induced aggregates results in a previously unobserved structure in which both the N‐terminal and C‐terminal domains contribute to β‐sheets. We propose a model for the structural organization of the aggregates and attribute the recruitment of the N‐terminal domain into the fiber structure to intermolecular cross linking.  相似文献   

12.
Amyloids are non-branching fibrils that are composed of stacked monomers stabilized by intermolecular β-sheets. Some amyloids are associated with incurable diseases, whereas others, functional amyloids, regulate different vital processes. The prevalence and significance of functional amyloids in wildlife are still poorly understood. In recent years, by applying new approach of large-scale proteome screening, a number of novel candidate amyloids were identified in the yeast Saccharomyces cerevisiae, many of which are localized in the yeast cell wall. In this work, we showed that one of these proteins, Toh1, possess amyloid properties. The Toh1-YFP hybrid protein forms detergent-resistant aggregates in the yeast cells while being expressed under its own PTOH1 or inducible PCUP1 promoter. Using bacterial system for generation of extracellular amyloid aggregates C-DAG, we demonstrated that the N-terminal Toh1 fragment, containing amyloidogenic regions predicted in silico, binds Congo Red dye, manifests ‘apple-green’ birefringence when examined between crossed polarizers, and forms amyloid-like fibrillar aggregates visualized by TEM. We have established that the Toh1(20–365)-YFP hybrid protein fluorescent aggregates are co-localized with a high frequency with Rnq1C-CFP and Sup35NM-CFP aggregates in the yeast cells containing [PIN+] and [PSI+] prions, and physical interaction of these aggregated proteins was confirmed by FRET. This is one of a few known cases of physical interaction of non-Q/N-rich amyloid-like protein and Q/N-rich amyloids, suggesting that interaction of different amyloid proteins may be determined not only by similarity of their primary structures but also by similarity of their secondary structures and of conformational folds.  相似文献   

13.
The budding yeast, Saccharomyces cerevisiae, harbors several prions that are transmitted as altered, heritable protein conformations. [SWI+] is one such prion whose determinant is Swi1, a subunit of the evolutionarily conserved chromatin‐remodeling complex SWI/SNF. Despite the importance of Swi1, the molecular events that lead to [SWI+] prionogenesis remain poorly understood. In this study, we have constructed floccullin‐promoter‐based URA3 reporters for [SWI+] identification. Using these reporters, we show that the spontaneous formation frequency of [SWI+] is significantly higher than that of [PSI+] (prion form of Sup35). We also show that preexisting [PSI+] or [PIN+] (prion form of Rnq1), or overproduction of Swi1 prion‐domain (PrD) can considerably promote Swi1 prionogenesis. Moreover, our data suggest a strain‐specific effect of overproduction of Sse1 – a nucleotide exchange factor of the molecular chaperone Hsp70, and its interaction with another molecular chaperone Hsp104 on [SWI+] maintenance. Additionally, we show that Swi1 aggregates are initially ring/ribbon‐like then become dot‐like in mature [SWI+] cells. In the presence of [PSI+] or [PIN+], Swi1 ring/ribbon‐like aggregates predominantly colocalize with the Sup35 or Rnq1 aggregates; without a preexisting prion, however, such colocalizations are rarely seen during Swi1‐PrD overproduction‐promoted Swi1 prionogenesis. We have thus demonstrated a complex interacting mechanism of yeast prionogenesis.  相似文献   

14.
Pheromone peptides are an important component of bacterial quorum‐sensing system. The pheromone peptide cOB1 (VAVLVLGA) of native commensal Enterococcus faecalis has also been identified as an antimicrobial peptide (AMP) and reported to kill the prototype clinical isolate strain of E. faecalis V583. In this study, the pheromone peptide cOB1 has shown to form amyloid‐like structures, a characteristic which is never reported for a pheromone peptide so far. With in silico analysis, the peptide was predicted to be highly amyloidogenic. Further, under experimental conditions, cOB1 formed aggregates displaying characteristics of amyloid structures such as bathochromic shift in Congo red absorbance, enhancement in thioflavin T fluorescence, and fibrillar morphology under transmission electron microscopy. This novel property of pheromone peptide cOB1 may have some direct effects on the binding of the pheromone to the receptor cells and subsequent conjugative transfer, making this observation more important for the therapeutics, dealing with the generation of virulent and multidrug‐resistant pathogenic strains.  相似文献   

15.
Prions are self‐perpetuating amyloid protein aggregates which underlie various neurodegenerative diseases in mammals and heritable traits in yeast. The molecular basis of how yeast and mammalian prions form spontaneously into infectious amyloid‐like structures is poorly understood. We have explored the hypothesis that oxidative stress is a general trigger for prion formation using the yeast [PSI+] prion, which is the altered conformation of the Sup35 translation termination factor. We show that the frequency of [PSI+] prion formation is elevated under conditions of oxidative stress and in mutants lacking key antioxidants. We detect increased oxidation of Sup35 methionine residues in antioxidant mutants and show that overexpression of methionine sulphoxide reductase abrogates both the oxidation of Sup35 and its conversion to the [PSI+] prion. [PSI+] prion formation is particularly elevated in a mutant lacking the Sod1 Cu,Zn‐superoxide dismutase. We have used fluorescence microscopy to show that the de novo appearance of [PSI+] is both rapid and increased in frequency in this mutant. Finally, electron microscopy analysis of native Sup35 reveals that similar fibrillar structures are formed in both the wild‐type and antioxidant mutants. Together, our data indicate that oxidative stress is a general trigger of [PSI+] formation, which can be alleviated by antioxidant defenses.  相似文献   

16.
The [PSI+] yeast prion is formed when Sup35 misfolds into amyloid aggregates. [PSI+], like other yeast prions, is dependent on the molecular chaperone Hsp104, which severs the prion seeds so that they pass on as the yeast cells divide. Surprisingly, however, overexpression of Hsp104 also cures [PSI+]. Several models have been proposed to explain this effect: inhibition of severing, asymmetric segregation of the seeds between mother and daughter cells, and dissolution of the prion seeds. First, we found that neither the kinetics of curing nor the heterogeneity in the distribution of the green fluorescent protein (GFP)-labeled Sup35 foci in partially cured yeast cells is compatible with Hsp104 overexpression curing [PSI+] by inhibiting severing. Second, we ruled out the asymmetric segregation model by showing that the extent of curing was essentially the same in mother and daughter cells and that the fluorescent foci did not distribute asymmetrically, but rather, there was marked loss of foci in both mother and daughter cells. These results suggest that Hsp104 overexpression cures [PSI+] by dissolution of the prion seeds in a two-step process. First, trimming of the prion seeds by Hsp104 reduces their size, and second, their amyloid core is eliminated, most likely by proteolysis.  相似文献   

17.
《Journal of molecular biology》2019,431(6):1186-1202
Modulation of liquid–liquid and liquid–hydrogel phase transitions is central to avoid the cytotoxic aggregation of proteins in eukaryotic cells, but knowledge on its relevance in bacteria is limited. Here the power of optogenetics to engineer proteins as light-responsive switches has been used to control the balance between solubility and aggregation for LOV2–WH1, a chimera between the plant blue light-responsive domain LOV2 and the bacterial prion-like protein RepA-WH1. These proteins were first linked by fusing, as a continuous α-helix, the C-terminal photo-transducer Jα helix in LOV2 with the N-terminal domain-closure α1 helix in RepA-WH1, and then improved for light-responsiveness by including mutations in the Jα moiety. In the darkness and in a crowded solution in vitro, LOV2–WH1 nucleates the irreversible assembly of amyloid fibers into a hydrogel. However, under blue light illumination, LOV2–WH1 assembles as soluble oligomers. When expressed in Escherichia coli, LOV2–WH1 forms in the darkness large intracellular amyloid inclusions compatible with bacterial proliferation. Strikingly, under blue light, LOV2–WH1 aggregates decrease in size, while they become detrimental for bacterial growth. LOV2–WH1 optogenetics governs the assembly of mutually exclusive inert amyloid fibers or cytotoxic oligomers, thus enabling the navigation of the conformational landscape of protein amyloidogenesis to generate potential photo-activated anti-bacterial devices (optobiotics).  相似文献   

18.
Prions consist of misfolded proteins that have adopted an infectious amyloid conformation. In vivo, prion biogenesis is intimately associated with the protein quality control machinery. Using electron tomography, we probed the effects of the heat shock protein Hsp70 chaperone system on the structure of a model yeast [PSI+] prion in situ. Individual Hsp70 deletions shift the balance between fibril assembly and disassembly, resulting in a variable shell of nonfibrillar, but still immobile, aggregates at the surface of the [PSI+] prion deposits. Both Hsp104 (an Hsp100 disaggregase) and Sse1 (the major yeast form of Hsp110) were localized to this surface shell of [PSI+] deposits in the deletion mutants. Elevation of Hsp104 expression promoted the appearance of this novel, nonfibrillar form of the prion aggregate. Moreover, Sse1 was found to regulate prion fibril length. Our studies reveal a key role for Sse1 (Hsp110), in cooperation with Hsp104, in regulating the length and assembly state of [PSI+] prion fibrils in vivo.  相似文献   

19.
The aggresome is an organelle that recruits aggregated proteins for storage and degradation. We performed an siRNA screen for proteins involved in aggresome formation and identified novel mammalian AAA+ protein disaggregases RuvbL1 and RuvbL2. Depletion of RuvbL1 or RuvbL2 suppressed aggresome formation and caused buildup of multiple cytoplasmic aggregates. Similarly, downregulation of RuvbL orthologs in yeast suppressed the formation of an aggresome‐like body and enhanced the aggregate toxicity. In contrast, their overproduction enhanced the resistance to proteotoxic stress independently of chaperone Hsp104. Mammalian RuvbL associated with the aggresome, and the aggresome substrate synphilin‐1 interacted directly with the RuvbL1 barrel‐like structure near the opening of the central channel. Importantly, polypeptides with unfolded structures and amyloid fibrils stimulated the ATPase activity of RuvbL. Finally, disassembly of protein aggregates was promoted by RuvbL. These data indicate that RuvbL complexes serve as chaperones in protein disaggregation.  相似文献   

20.
《朊病毒》2013,7(4):238-244
Prions of budding yeast serve as a tractable model of amyloid behavior. Here we address the issue of the effect of yeast strain variation on prion stability, focusing also on the effect of amyloid conformation and the involvement of the co-chaperone Sis1, an essential J-protein partner of Hsp70. We found, despite an initial report to the contrary, that yeast strain background has little effect on the requirement for particular Sis1 domains for stable propagation of the prion [RNQ+], if the level of Sis1 expression is controlled. On the other hand, some variation in prion behavior was observed between yeast strains, in particular, the stability of certain [PSI+] variants. Future examination of such yeast strain-specific phenomena may provide useful insights into the basis of prion/chaperone dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号