首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The major fungal pathogen Candida albicans can occupy diverse microenvironments in its human host. During colonization of the gastrointestinal or urogenital tracts, mucosal surfaces, bloodstream, and internal organs, C. albicans thrives in niches that differ with respect to available nutrients and local environmental stresses. Although most studies are performed on glucose‐grown cells, changes in carbon source dramatically affect cell wall architecture, stress responses, and drug resistance. We show that growth on the physiologically relevant carboxylic acid, lactate, has a significant impact on the C. albicans cell wall proteome and secretome. The regulation of cell wall structural proteins (e.g. Cht1, Phr1, Phr2, Pir1) correlated with extensive cell wall remodeling in lactate‐grown cells and with their increased resistance to stresses and antifungal drugs, compared with glucose‐grown cells. Moreover, changes in other proteins (e.g. Als2, Gca1, Phr1, Sap9) correlated with the increased adherence and biofilm formation of lactate‐grown cells. We identified mating and pheromone‐regulated proteins that were exclusive to lactate‐grown cells (e.g. Op4, Pga31, Pry1, Scw4, Yps7) as well as mucosa‐specific and other niche‐specific factors such as Lip4, Pga4, Plb5, and Sap7. The analysis of the corresponding null mutants confirmed that many of these proteins contribute to C. albicans adherence, stress, and antifungal drug resistance. Therefore, the cell wall proteome and secretome display considerable plasticity in response to carbon source. This plasticity influences important fitness and virulence attributes known to modulate the behavior of C. albicans in different host microenvironments during infection.  相似文献   

3.

A number of proteins contributing in pathogen’s virulence mechanisms offer a potential target for anticandidal therapeutics. CPH1 and its regulatory proteins Cst20, Hst7, Cek1 (MAPK cascade) administers filamentation and morphogenesis in human pathogenic fungus Candida albicans. These proteins are essential targets for their involvement in the successful establishment of the fungi within the host. In silico drug design using virtual screening, docking and (ADME)/Tox analysis for identification of lead compounds is an economic strategy for the development of potent anticandidal agent. The study divulged five persuasive ligands (2-O-prenyl coumaric acid, 2-nitro-4-methyl-cinnamaldehyde, 3,5-diprenyl-4-coumaric acid, VT1161, T-2307) out of 25, which collectively inhibited Cst20, Hst7, Cek1 in C. albicans. They can hence be used as natural drug leads for designing more effective inhibitors of multiple targets for C. albicans survival and progression of the disease. This study will enhance our understanding of the phenomenon “multiple targeting” and multi-target drug discovery further accelerating efficient broad-spectrum antifungal therapeutics development in near future. This study provides a good platform to eradicate the issue of “target shortage” that might facilitate the discovery of novel drugs in near future because the prolonged use of antibiotics over the years has transformed pathogenic fungus into resistant to many drugs.

  相似文献   

4.
The human fungal pathogen Candida albicans ambiguously decodes the universal leucine CUG codon predominantly as serine but also as leucine. C. albicans has a high capacity to survive and proliferate in adverse environments but the rate of leucine incorporation fluctuates in response to different stress conditions. C. albicans is adapted to tolerate this ambiguous translation through a mechanism that combines drastic decrease in CUG usage and reduction of CUG-encoded residues in conserved positions in the protein sequences. However, in a few proteins, the residues encoded by CUG codons are found in strictly conserved positions, suggesting that this genetic code alteration might have a functional impact. One such example is Cek1, a central signaling protein kinase that contains a single CUG-encoded residue at a conserved position, whose identity might regulate the correct flow of information across the MAPK cascade. Here we show that insertion of a leucine at the CUG-encoded position decreases the stability of Cek1, apparently without major structural alterations. In contrast, incorporation of a serine residue at the CUG position induces the autophosphorylation of the conserved tyrosine residue of the Cek1 231TEY233 motif, and increases its intrinsic kinase activity in vitro. These findings show that CUG ambiguity modulates the activity of Cek1, a key kinase directly linked to morphogenesis and virulence in C. albicans.  相似文献   

5.
6.
7.
Perception of external stimuli and generation of an appropriate response are crucial for host colonization by pathogens. In pathogenic fungi, mitogen activated protein kinase (MAPK) pathways regulate dimorphism, biofilm/mat formation, and virulence. Signaling mucins, characterized by a heavily glycosylated extracellular domain, a transmembrane domain, and a small cytoplasmic domain, are known to regulate various signaling pathways. In Candida albicans, the mucin Msb2 regulates the Cek1 MAPK pathway. We show here that Msb2 is localized to the yeast cell wall and is further enriched on hyphal surfaces. A msb2Δ/Δ strain formed normal hyphae but had biofilm defects. Cek1 (but not Mkc1) phosphorylation was absent in the msb2Δ/Δ mutant. The extracellular domain of Msb2 was shed in cells exposed to elevated temperature and carbon source limitation, concomitant with germination and Cek1 phosphorylation. Msb2 shedding occurred differentially in cells grown planktonically or on solid surfaces in the presence of cell wall and osmotic stressors. We further show that Msb2 shedding and Cek1 phosphorylation were inhibited by addition of Pepstatin A (PA), a selective inhibitor of aspartic proteases (Saps). Analysis of combinations of Sap protease mutants identified a sap8Δ/Δ mutant with reduced MAPK signaling along with defects in biofilm formation, thereby suggesting that Sap8 potentially serves as a major regulator of Msb2 processing. We further show that loss of either Msb2 (msb2Δ/Δ) or Sap8 (sap8Δ/Δ) resulted in higher C. albicans surface β-glucan exposure and msb2Δ/Δ showed attenuated virulence in a murine model of oral candidiasis. Thus, Sap-mediated proteolytic cleavage of Msb2 is required for activation of the Cek1 MAPK pathway in response to environmental cues including those that induce germination. Inhibition of Msb2 processing at the level of Saps may provide a means of attenuating MAPK signaling and reducing C. albicans virulence.  相似文献   

8.
In the search of new compounds with biofilm‐inhibiting properties, mangroves with their richness of secondary metabolites can be a valuable resource. Crude methanolic leaf extracts from the mangrove Laguncularia racemosa enriched in phenolic substances cause a reduction in initial cell adhesion of Candida glabrata and Candida albicans, but not on Escherichia coli. LC/MS‐guided fractionation of the phenolic compounds resulted in 19 fractions, of which ten were analyzed for their bioactivity against cell adhesion. Effects on cell adhesion and planktonic growth of Escherichia coli, Candida glabrata and Candida albicans were measured in 96‐well microtiter plates in the presence of 0.2 mg ml?1 of the isolated fractions. Two fractions caused a reduction of cell adhesion of Candida albicans. These fractions containing bioactive compounds were analyzed by LC/MS and NMR spectroscopy. Casuarinin and digalloyl‐hexahydroxydiphenoyl‐glucose were identified in the active fractions, in addition to three signals of ellagitannins. These results indicate a specific mode of action of hydrolysable tannins against cell adhesion of Candida albicans, which needs to be further analyzed.  相似文献   

9.
10.
11.
Pathogenic mechanisms of Candida glabrata in oral candidiasis, especially because of its inability to form hyphae, are understudied. Since both Candida albicans and C. glabrata are frequently co-isolated in oropharyngeal candidiasis (OPC), we examined their co-adhesion in vitro and observed adhesion of C. glabrata only to C. albicans hyphae microscopically. Mice were infected sublingually with C. albicans or C. glabrata individually, or with both species concurrently, to study their ability to cause OPC. Infection with C. glabrata alone resulted in negligible infection of tongues; however, colonization by C. glabrata was increased by co-infection or a pre-established infection with C. albicans. Furthermore, C. glabrata required C. albicans for colonization of tongues, since decreasing C. albicans burden with fluconazole also reduced C. glabrata. C. albicans hyphal wall adhesins Als1 and Als3 were important for in vitro adhesion of C. glabrata and to establish OPC. C. glabrata cell wall protein coding genes EPA8, EPA19, AWP2, AWP7, and CAGL0F00181 were implicated in mediating adhesion to C. albicans hyphae and remarkably, their expression was induced by incubation with germinated C. albicans. Thus, we found a near essential requirement for the presence of C. albicans for both initial colonization and establishment of OPC infection by C. glabrata.  相似文献   

12.
13.
The genetics of the most common human pathogenic fungus Candida albicans has several unique characteristics. Most notably, C. albicans does not follow the universal genetic code, by translating the CUG codon into serine instead of leucine. Consequently, the use of Saccharomyces cerevisiae as a host for yeast two-hybrid experiments with C. albicans proteins is limited due to erroneous translation caused by the aberrant codon usage of C. albicans. To circumvent the need for heterologous expression and codon optimalization of C. albicans genes we constructed a two-hybrid system with C. albicans itself as the host with components that are compatible for use in this organism. The functionality of this two-hybrid system was shown by successful interaction assays with the protein pairs Kis1–Snf4 and Ino4-Ino2. We further confirmed interactions between components of the filamentation/mating MAP kinase pathway, including the unsuspected interaction between the MAP kinases Cek2 and Cek1. We conclude that this system can be used to enhance our knowledge of protein–protein interactions in C. albicans.  相似文献   

14.
Neisseria gonorrhoeae produces two transferrin binding proteins, TbpA and TbpB, which together enable efficient iron transport from human transferrin. We demonstrate that expression of the tbp genes is controlled by MisR, a response regulator in the two‐component regulatory system that also includes the sensor kinase MisS. The tbp genes were up‐regulated in the misR mutant under iron‐replete conditions but were conversely down‐regulated in the misR mutant under iron‐depleted conditions. The misR mutant was capable of transferrin‐iron uptake at only 50% of wild‐type levels, consistent with decreased tbp expression. We demonstrate that phosphorylated MisR specifically binds to the tbpBA promoter and that MisR interacts with five regions upstream of the tbpB start codon. These analyses confirm that MisR directly regulates tbpBA expression. The MisR binding sites in the gonococcus are only partially conserved in Neisseria meningitidis, which may explain why tbpBA was not MisR‐regulated in previous studies using this related pathogen. This is the first report of a trans‐acting protein factor other than Fur that can directly contribute to gonococcal tbpBA regulation.  相似文献   

15.
Abstract CYC‐like genes are widely conserved in controlling floral dorsoventral asymmetry (zygomorphy) through persistent expression in corresponding domains in core eudicots. To understand how CYC‐like gene expression is maintained during flower development, we selected Chirita heterotricha as a material and isolated the promoter sequences of the ChCYC1C and ChCYC1D genes, homologs of CYC, by inverse polymerase chain reaction. Further promoter analyses led to the identification of a putative cis‐regulatory element in each promoter matching the consensus DNA binding site for Antirrhinum CYC protein: GGCCCCTC at ?165 for ChCYC1C, and GGCCCCCC at ?163 for ChCYC1D. This indicates that both the ChCYC1C and ChCYC1D genes have probably evolved autoregulatory loops to sustain their expression in developing flowers. We also isolated the coding and promoter sequences of the ChRAD gene, a homolog of Antirrhinum RAD. Promoter analysis showed that the ChRAD gene promoter also contained a putative CYC‐binding site (GGCCCAC at ?134). Therefore, ChRAD is likely a direct target of the ChCYC1 genes, which is similar to Antirrhinum RAD. These results imply that the establishment of floral zygomorphy in Chirita may have been achieved by the evolution of an autoregulatory loop for CYC‐like genes, which was probably accompanied by simultaneous co‐option of the RAD‐like gene into their regulatory network.  相似文献   

16.
Candida albicans and Candida glabrata account for the majority of candidiasis cases worldwide. Although both species are in the same genus, they differ in key virulence attributes. Within this work, live cell imaging was used to examine the dynamics of neutrophil activation after confrontation with either C. albicans or C. glabrata. Analyses revealed higher phagocytosis rates of C. albicans than C. glabrata that resulted in stronger PMN (polymorphonuclear cells) activation by C. albicans. Furthermore, we observed differences in the secretion of chemokines, indicating chemotactic differences in PMN signalling towards recruitment of further immune cells upon confrontation with Candida spp. Supernatants from co‐incubations of neutrophils with C. glabrata primarily attracted monocytes and increased the phagocytosis of C. glabrata by monocytes. In contrast, PMN activation by C. albicans resulted in recruitment of more neutrophils. Two complex infection models confirmed distinct targeting of immune cell populations by the two Candida spp.: In a human whole blood infection model, C. glabrata was more effectively taken up by monocytes than C. albicans and histopathological analyses of murine model infections confirmed primarily monocytic infiltrates in C. glabrata kidney infection in contrast to PMN‐dominated infiltrates in C. albicans infection. Taken together, our data demonstrate that the human opportunistic fungi C. albicans and C. glabrata are differentially recognized by neutrophils and one outcome of this differential recognition is the preferential uptake of C. glabrata by monocytes.  相似文献   

17.
The release of extracellular vesicles (EV) by fungal organisms is considered an alternative transport mechanism to trans‐cell wall passage of macromolecules. Previous studies have revealed the presence of EV in culture supernatants from fungal pathogens, such as Cryptococcus neoformans, Histoplasma capsulatum, Paracoccidioides brasiliensis, Sporothrix schenckii, Malassezia sympodialis and Candida albicans. Here we investigated the size, composition, kinetics of internalization by bone marrow‐derived murine macrophages (MO) and dendritic cells (DC), and the immunomodulatory activity of C. albicans EV. We also evaluated the impact of EV on fungal virulence using the Galleria mellonella larvae model. By transmission electron microscopy and dynamic light scattering, we identified two populations ranging from 50 to 100 nm and 350 to 850 nm. Two predominant seroreactive proteins (27 kDa and 37 kDa) and a group of polydispersed mannoproteins were observed in EV by immunoblotting analysis. Proteomic analysis of C. albicans EV revealed proteins related to pathogenesis, cell organization, carbohydrate and lipid metabolism, response to stress, and several other functions. The major lipids detected by thin‐layer chromatography were ergosterol, lanosterol and glucosylceramide. Short exposure of MO to EV resulted in internalization of these vesicles and production of nitric oxide, interleukin (IL)‐12, transforming growth factor‐beta (TGF‐β) and IL‐10. Similarly, EV‐treated DC produced IL‐12p40, IL‐10 and tumour necrosis factor‐alpha. In addition, EV treatment induced the up‐regulation of CD86 and major histocompatibility complex class‐II (MHC‐II). Inoculation of G. mellonella larvae with EV followed by challenge with C. albicans reduced the number of recovered viable yeasts in comparison with infected larvae control. Taken together, our results demonstrate that C. albicans EV were immunologically active and could potentially interfere with the host responses in the setting of invasive candidiasis.  相似文献   

18.
19.
20.
Candida albicans is an opportunistic fungal pathogen of humans causing superficial mucosal infections and life‐threatening systemic disease. The fungal cell wall is the first point of contact between the invading pathogen and the host innate immune system. As a result, the polysaccharides that comprise the cell wall act as pathogen associated molecular patterns, which govern the host–pathogen interaction. The cell wall is dynamic and responsive to changes in the external environment. Therefore, the host environment plays a critical role in regulating the host–pathogen interaction through modulation of the fungal cell wall. This review focuses on how environmental adaptation modulates the cell wall structure and composition, and the subsequent impact this has on the innate immune recognition of C. albicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号