首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two recent articles were written in response to our paper “Breaking RAD: An evaluation of the utility of restriction site associated DNA sequencing scans of adaptation.” While we agree with some of the comments made by the authors of these two response papers, we still believe caution should be employed in RADseq studies that aim to detect loci that contribute to adaptation. In this rebuttal, we evaluate the key points made in these papers, attempt to identify a middle ground and make suggestions for responsibly conducting future studies to understand the genomewide mechanisms of adaptation.  相似文献   

2.
Connecting broad-scale patterns of genetic variation and population structure to genetic diversity on a landscape is a key step towards understanding historical processes of migration and adaptation. New genomic approaches can be used to increase the resolution of phylogeographic studies while reducing locus sampling effects and circumventing ascertainment bias. Here, we use a novel approach based on high-throughput sequencing to characterize genetic diversity in complete chloroplast genomes and >10,000 nuclear loci in switchgrass, at continental and landscape scales. Switchgrass is a North American tallgrass species, which is widely used in conservation and perennial biomass production, and shows strong ecotypic adaptation and population structure across the continental range. We sequenced 40.9 billion base pairs from 24 individuals from across the species' range and 20 individuals from the Indiana Dunes. Analysis of plastome sequence revealed 203 variable SNP sites that define eight haplogroups, which are differentiated by 4-127 SNPs and confirmed by patterns of indel variation. These include three deeply divergent haplogroups, which correspond to the previously described lowland-upland ecotypic split and a novel upland haplogroup split that dates to the mid-Pleistocene. Most of the plastome haplogroup diversity present in the northern switchgrass range, including in the Indiana Dunes, originated in the mid- or upper Pleistocene prior to the most recent postglacial recolonization. Furthermore, a recently colonized landscape feature (approximately 150 ya) in the Indiana Dunes contains several deeply divergent upland haplogroups. Nuclear markers also support a deep lowland-upland split, followed by limited gene flow, and show extensive gene flow in the local population of the Indiana Dunes.  相似文献   

3.
The KwaZulu‐Natal yellowfish (Labeobarbus natalensis) is an abundant cyprinid, endemic to KwaZulu‐Natal Province, South Africa. In this study, we developed a single‐nucleotide polymorphism (SNP) dataset from double‐digest restriction site‐associated DNA (ddRAD) sequencing of samples across the distribution. We addressed several hidden challenges, primarily focusing on proper filtering of RAD data and selecting optimal parameters for data processing in polyploid lineages. We used the resulting high‐quality SNP dataset to investigate the population genetic structure of L. natalensis. A small number of mitochondrial markers present in these data had disproportionate influence on the recovered genetic structure. The presence of singleton SNPs also confounded genetic structure. We found a well‐supported division into northern and southern lineages, with further subdivision into five populations, one of which reflects north–south admixture. Approximate Bayesian Computation scenario testing supported a scenario where an ancestral population diverged into northern and southern lineages, which then diverged to yield the current five populations. All river systems showed similar levels of genetic diversity, which appears unrelated to drainage system size. Nucleotide diversity was highest in the smallest river system, the Mbokodweni, which, together with adjacent small coastal systems, should be considered as a key catchment for conservation.  相似文献   

4.
Mitochondrial DNA (mtDNA) has formed the backbone of phylogeographic research for many years; however, recent trends focus on genome‐wide analyses. One method proposed for calibrating inferences from noisy next‐generation data, such as RAD sequencing, is to compare these results with analyses of mitochondrial sequences. Most researchers using this approach appear to be unaware that many single nucleotide polymorphisms (SNPs) identified from genome‐wide sequence data are themselves mitochondrial, or assume that these are too few to bias analyses. Here, we demonstrate two methods for mining mitochondrial markers using RAD sequence data from three South African species of yellowfish, Labeobarbus. First, we use a rigorous SNP discovery pipeline using the program stacks , to identify variant sites in mtDNA, which we then combine into haplotypes. Second, we directly map sequence reads against a mitochondrial genome reference. This method allowed us to reconstruct up to 98% of the Labeobarbus mitogenome. We validated these mitogenome reconstructions through blast database searches and by comparison with cytochrome b gene sequences obtained through Sanger sequencing. Finally, we investigate the organismal consequences of these data including ancient genetic exchange and a recent translocation among populations of L. natalensis, as well as interspecific hybridization between L. aeneus and L. kimberleyensis.  相似文献   

5.
6.
The extent to which convergent adaptation to similar ecological niches occurs by a predictable genetic basis remains a fundamental question in biology. Threespine stickleback fish have undergone an adaptive radiation in which ancestral oceanic populations repeatedly colonized and adapted to freshwater habitats. In multiple lakes in British Columbia, two different freshwater ecotypes have evolved: a deep‐bodied benthic form adapted to forage near the lake substrate, and a narrow‐bodied limnetic form adapted to forage in open water. Here, we use genome‐wide linkage mapping in marine × benthic F2 genetic crosses to test the extent of shared genomic regions underlying benthic adaptation in three benthic populations. We identify at least 100 Quantitative Trait Loci (QTL) harboring genes influencing skeletal morphology. The majority of QTL (57%) are unique to one cross. However, four genomic regions affecting eight craniofacial and armor phenotypes are found in all three benthic populations. We find that QTL are clustered in the genome and overlapping QTL regions are enriched for genomic signatures of natural selection. These findings suggest that benthic adaptation has occurred via both parallel and nonparallel genetic changes.  相似文献   

7.
R. Qiao  X. Li  X. Han  K. Wang  G. Lv  G. Ren  X. Li 《Animal genetics》2019,50(3):262-265
To investigate the population structure and genetic diversity of Henan indigenous pig breeds, samples from a total of 78 pigs of 11 breeds were collected, including four pig populations from Henan Province, three Western commercial breeds, three Chinese native pig breeds from other provinces and one Asian wild boar. The genotyping datasets were obtained by genotyping‐by‐sequencing technology. We found a high degree of polymorphism and rapid linkage disequilibrium decay in Henan pigs. A neighbor‐joining tree, principal component analysis and structure analysis revealed that the Huainan and Erhualian pigs were clustered together and that the Queshan black pigs were clearly grouped together but that the Nanyang and Yuxi pigs were extensively admixed with Western pigs. In addition, heterozygosity values might indicate that Henan indigenous pigs, especially the Queshan black and Huainan pigs, were subjected to little selection during domestication. The results presented here indicate that Henan pig breeds were admixed from Western breeds, especially Nanyang and Yuxi pigs. Therefore, establishment of purification and rejuvenation systems to implement conservation strategies is urgent. In addition, it is also necessary to accelerate genetic resources improvement and utilization using modern breeding technologies, such as genomic selection and genome‐wide association studies.  相似文献   

8.
Flexibility and low cost make genotyping‐by‐sequencing (GBS) an ideal tool for population genomic studies of nonmodel species. However, to utilize the potential of the method fully, many parameters affecting library quality and single nucleotide polymorphism (SNP) discovery require optimization, especially for conifer genomes with a high repetitive DNA content. In this study, we explored strategies for effective GBS analysis in pine species. We constructed GBS libraries using HpaII, PstI and EcoRI‐MseI digestions with different multiplexing levels and examined the effect of restriction enzymes on library complexity and the impact of sequencing depth and size selection of restriction fragments on sequence coverage bias. We tested and compared UNEAK, Stacks and GATK pipelines for the GBS data, and then developed a reference‐free SNP calling strategy for haploid pine genomes. Our GBS procedure proved to be effective in SNP discovery, producing 7000–11 000 and 14 751 SNPs within and among three pine species, respectively, from a PstI library. This investigation provides guidance for the design and analysis of GBS experiments, particularly for organisms for which genomic information is lacking.  相似文献   

9.
Little is known about intraspecific variation within the deacon rockfish (Sebastes diaconus), a recently described species found in the northeast Pacific Ocean. We investigated population structure among fish sampled from two nearshore reefs (Siletz Reef and Seal Rock) and one offshore site (Stonewall Bank) within a <50‐km2 area off the Oregon coast. Fish from the three sample sites exhibited small but statistically significant differences based on genetic variation at >15,000 neutral loci, whether analyzed independently or classified into nearshore and offshore groups. Male and females were readily distinguished using genetic data and 92 outlier loci were associated with sex, potentially indicating differential selection between males and females. Morphometric results indicated that there was significant secondary sexual dimorphism in otolith shape, but further sampling is required to disentangle potential confounding influence of age. This study is the first step toward understanding intraspecific variation within the deacon rockfish and the potential management implications. Since differentiation among the three sample sites was small, we consider the results to be suggestive of a single stock. However, future studies should evaluate how the stock is affected by differences in sex, age, and gene flow between the nearshore and offshore environments.  相似文献   

10.
11.
An extensive survey of the standing genetic variation in natural populations is among the priority steps in developing a species into a model system. In recent years, green foxtail (Setaria viridis), along with its domesticated form foxtail millet (S. italica), has rapidly become a promising new model system for C4 grasses and bioenergy crops, due to its rapid life cycle, large amount of seed production and small diploid genome, among other characters. However, remarkably little is known about the genetic diversity in natural populations of this species. In this study, we survey the genetic diversity of a worldwide sample of more than 200 S. viridis accessions, using the genotyping‐by‐sequencing technique. Two distinct genetic groups in S. viridis and a third group resembling S. italica were identified, with considerable admixture among the three groups. We find the genetic variation of North American S. viridis correlates with both geography and climate and is representative of the total genetic diversity in this species. This pattern may reflect several introduction/dispersal events of S. viridis into North America. We also modelled demographic history and show signal of recent population decline in one subgroup. Finally, we show linkage disequilibrium decay is rapid (<45 kb) in our total sample and slow in genetic subgroups. These results together provide an in‐depth understanding of the pattern of genetic diversity of this new model species on a broad geographic scale. They also provide key guidelines for on‐going and future work including germplasm preservation, local adaptation, crossing designs and genomewide association studies.  相似文献   

12.

Background

The Tibetan pig is one of domestic animals indigenous to the Qinghai-Tibet Plateau. Several geographically isolated pig populations are distributed throughout the Plateau. It remained an open question if these populations have experienced different demographic histories and have evolved independent adaptive loci for the harsh environment of the Plateau. To address these questions, we herein investigated ~ 40,000 genetic variants across the pig genome in a broad panel of 678 individuals from 5 Tibetan geographic populations and 34 lowland breeds.

Results

Using a series of population genetic analyses, we show that Tibetan pig populations have marked genetic differentiations. Tibetan pigs appear to be 3 independent populations corresponding to the Tibetan, Gansu and Sichuan & Yunnan locations. Each population is more genetically similar to its geographic neighbors than to any of the other Tibetan populations. By applying a locus-specific branch length test, we identified both population-specific and -shared candidate genes under selection in Tibetan pigs. These genes, such as PLA2G12A, RGCC, C9ORF3, GRIN2B, GRID1 and EPAS1, are involved in high-altitude physiology including angiogenesis, pulmonary hypertension, oxygen intake, defense response and erythropoiesis. A majority of these genes have not been implicated in previous studies of highlanders and high-altitude animals.

Conclusion

Tibetan pig populations have experienced substantial genetic differentiation. Historically, Tibetan pigs likely had admixture with neighboring lowland breeds. During the long history of colonization in the Plateau, Tibetan pigs have developed a complex biological adaptation mechanism that could be different from that of Tibetans and other animals. Different Tibetan pig populations appear to have both distinct and convergent adaptive loci for the harsh environment of the Plateau.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-834) contains supplementary material, which is available to authorized users.  相似文献   

13.
Arctic freshwater ecosystems have been profoundly affected by climate change. Given that the Arctic charr (Salvelinus alpinus) is often the only fish species inhabiting these ecosystems, it represents a valuable model for studying the impacts of climate change on species life‐history diversity and adaptability. Using a genotyping‐by‐sequencing approach, we identified 5,976 neutral single nucleotide polymorphisms and found evidence for reduced gene flow between allopatric morphs from two high Arctic lakes, Linne'vatn (Anadromous, Normal, and Dwarf) and Ellasjøen (Littoral and Pelagic). Within each lake, the degree of genetic differentiation ranged from low (Pelagic vs. Littoral) to moderate (Anadromous and Normal vs. Dwarf). We identified 17 highly diagnostic, putatively adaptive SNPs that differentiated the allopatric morphs. Although we found no evidence for adaptive differences between morphs within Ellasjøen, we found evidence for moderate (Anadromous vs. Normal) to high genetic differentiation (Anadromous and Normal vs. Dwarf) among morphs within Linne'vatn based on two adaptive loci. As these freshwater ecosystems become more productive, the frequency of sympatric morphs in Ellasjøen will likely shift based on foraging opportunities, whereas the propensity to migrate may decrease in Linne'vatn, increasing the frequency of the Normal morph. The Dwarf charr was the most genetically distinct group. Identifying the biological basis for small body size should elucidate the potential for increased growth and subsequent interbreeding with sympatric morphs. Overall, neutral and adaptive genomic differentiation between allopatric and some sympatric morphs suggests that the response of Arctic charr to climate change will be variable across freshwater ecosystems.  相似文献   

14.
While various technologies for high‐throughput genotyping have been developed for ecological studies, simple methods tolerant to low‐quality DNA samples are still limited. In this study, we tested the availability of a random PCR‐based genotyping‐by‐sequencing technology, genotyping by random amplicon sequencing, direct (GRAS‐Di). We focused on population genetic analysis of estuarine mangrove fishes, including two resident species, the Amboina cardinalfish (Fibramia amboinensis, Bleeker, 1853) and the Duncker's river garfish (Zenarchopterus dunckeri, Mohr, 1926), and a marine migrant, the blacktail snapper (Lutjanus fulvus, Forster, 1801). Collections were from the Ryukyu Islands, southern Japan. PCR amplicons derived from ~130 individuals were pooled and sequenced in a single lane on a HiSeq2500 platform, and an average of three million reads was obtained per individual. Consensus contigs were assembled for each species and used for genotyping of single nucleotide polymorphisms by mapping trimmed reads onto the contigs. After quality filtering steps, 4,000–9,000 putative single nucleotide polymorphisms were detected for each species. Although DNA fragmentation can diminish genotyping performance when analysed on next‐generation sequencing technology, the effect was small. Genetic differentiation and a clear pattern of isolation‐by‐distance was observed in F. amboinensis and Z. dunckeri by means of principal component analysis, FST and the admixture analysis. By contrast, L. fulvus comprised a genetically homogeneous population with directional recent gene flow. These genetic differentiation patterns reflect patterns of estuary use through life history. These results showed the power of GRAS‐Di for fine‐grained genetic analysis using field samples, including mangrove fishes.  相似文献   

15.
Studies of hybrid zone dynamics often investigate a single sampling period and draw conclusions from that temporal snapshot. Stochasticity can, however, result in loci with spurious outlier patterns, which is exacerbated by limited temporal or geographic sampling. Comparing admixed populations from different geographic regions is one way to detect repeatedly divergent genomic regions potentially involved in reproductive isolation. Temporal comparisons also allow us to control partially for the role of stochasticity, but the power of temporal sampling has not yet been adequately explored. In North America, black‐capped (Poecile atricapillus) and Carolina (P. carolinensis) chickadees hybridize in a contact zone extending from New Jersey to Kansas. The hybrid zone is likely maintained by strong intrinsic selection against hybrids, and it is moving north. We used a reduced representation genomic approach and temporally spaced sampling—two samples of ~80 individuals separated by a decade—to determine the pattern and consistency of selection and genomic introgression in the chickadee hybrid zone. We report consistently low introgression for highly divergent loci between P. atricapillus and P. carolinensis in this moving hybrid zone. This is strong evidence that these loci may be linked to genomic regions involved in reproductive isolation between chickadees.  相似文献   

16.
Delineation of units below the species level is critical for prioritizing conservation actions for species at‐risk. Genetic studies play an important role in characterizing patterns of population connectivity and diversity to inform the designation of conservation units, especially for populations that are geographically isolated. The northernmost range margin of Western Rattlesnakes (Crotalus oreganus) occurs in British Columbia, Canada, where it is federally classified as threatened and restricted to five geographic regions. In these areas, Western Rattlesnakes hibernate (den) communally, raising questions about connectivity within and between den complexes. At present, Western Rattlesnake conservation efforts are hindered by a complete lack of information on genetic structure and degree of isolation at multiple scales, from the den to the regional level. To fill this knowledge gap, we used Genotyping‐in‐Thousands by sequencing (GT‐seq) to genotype an optimized panel of 362 single nucleotide polymorphisms (SNPs) from individual samples (n = 461) collected across the snake's distribution in western Canada and neighboring Washington (USA). Hierarchical STRUCTURE analyses found evidence for population structure within and among the five geographic regions in BC, as well as in Washington. Within these regions, 11 genetically distinct complexes of dens were identified, with some regions having multiple complexes. No significant pattern of isolation‐by‐distance and generally low levels of migration were detected among den complexes across regions. Additionally, snakes within dens generally were more related than those among den complexes within a region, indicating limited movement. Overall, our results suggest that the single, recognized designatable unit for Western Rattlesnakes in Canada should be re‐assessed to proactively focus conservation efforts on preserving total genetic variation detected range‐wide. More broadly, our study demonstrates a novel application of GT‐seq for investigating patterns of diversity in wild populations at multiple scales to better inform conservation management.  相似文献   

17.
The phylogenetic and population genetic structure of symbiotic microorganisms may correlate with important ecological traits that can be difficult to directly measure, such as host preferences or dispersal rates. This study develops and tests a low‐cost double‐digest restriction site‐associated DNA sequencing (ddRADseq) protocol to reveal among‐ and within‐species genetic structure for Lophodermium, a genus of fungal endophytes whose evolutionary analyses have been limited by the scarcity of informative markers. The protocol avoids expensive barcoded adapters and incorporates universal indexes for multiplexing. We tested for reproducibility and functionality by comparing shared loci from sample replicates and assessed the effects of numbers of ambiguous sites and clustering thresholds on coverage depths, number of shared loci among samples, and phylogenetic reconstruction. Errors between technical replicates were minimal. Relaxing the quality‐filtering criteria increased the mean coverage depth per locus and the number of loci recovered within a sample, but had little effect on the number of shared loci across samples. Increasing clustering threshold decreased the mean coverage depth per cluster and increased the number of loci recovered within a sample but also decreased the number of shared loci across samples, especially among distantly related species. The combination of low similarity clustering (70%) and relaxed quality‐filtering (allowing up to 30 ambiguous sites per read) performed the best in phylogenetic analyses at both recent and deep genetic divergences. Hence, this method generated sufficient number of shared homologous loci to investigate the evolutionary relationships among divergent fungal lineages with small haploid genomes. The greater genetic resolution also revealed new structure within species that correlated with ecological traits, providing valuable insights into their cryptic life histories.  相似文献   

18.
19.
Analysis of genetic diversity represents a fundamental component of ecological risk assessments in contaminated environments. Many studies have assessed the genetic implications of chronic radiation exposure at Chernobyl, generally recording an elevated genetic diversity and mutation rate in rodents, plants, and birds inhabiting contaminated areas. Only limited studies have considered genetic diversity in aquatic biota at Chernobyl, despite the large number of freshwater systems where elevated dose rates will persist for many years. Consequently, the present study aimed to assess the effects of chronic radiation exposure on genetic diversity in the freshwater crustacean, Asellus aquaticus, using a genome‐wide SNP approach (Genotyping‐by‐sequencing). It was hypothesized that genetic diversity in A. aquaticus would be positively correlated with dose rate. A. aquaticus was collected from six lakes in Belarus and the Ukraine ranging in dose rate from 0.064 to 27.1 µGy/hr. Genotyping‐by‐sequencing analysis was performed on 74 individuals. A significant relationship between geographical distance and genetic differentiation confirmed the Isolation‐by‐Distance model. Conversely, no significant relationship between dose rate and genetic differentiation suggested no effect of the contamination gradient on genetic differentiation between populations. No significant relationship between five measures of genetic diversity and dose rate was recorded, suggesting that radiation exposure has not significantly influenced genetic diversity in A. aquaticus at Chernobyl. This is the first study to adopt a genome‐wide SNP approach to assess the impacts of environmental radiation exposure on biota. These findings are fundamental to understanding the long‐term success of aquatic populations in contaminated environments at Chernobyl and Fukushima.  相似文献   

20.
Across Europe, genetic diversity can be expected to decline toward the North because of stochastic and selective effects which may imply diminished phenotypic variation and less potential for future genetic adaptations to environmental change. Understanding such latitudinal patterns can aid provenance selection for breeding or assisted migration approaches. In an experiment simulating different winter temperatures, we assessed quantitative trait variation, genetic diversity, and differentiation for natural populations of the grass Arrhenatherum elatius originating from a large latitudinal gradient. In general, populations from the North grew smaller and had a lower flowering probability. Toward the North, the absolute plastic response to the different winter conditions as well as heritability for biomass production significantly declined. Genetic differentiation in plant height and probability of flowering were very strong and significantly higher than under neutral expectations derived from SNP data, suggesting adaptive differentiation. Differentiation in biomass production did not exceed but mirrored patterns for neutral genetic differentiation, suggesting that migration‐related processes caused the observed clinal trait variation. Our results demonstrate that genetic diversity and trait differentiation patterns for Aelatius along a latitudinal gradient are likely shaped by both local selection and genetic drift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号