首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-cell recognition is a fundamental process that allows cells to coordinate multicellular behaviors. Some microbes, such as myxobacteria, build multicellular fruiting bodies from free-living cells. However, how bacterial cells recognize each other by contact is poorly understood. Here we show that myxobacteria engage in recognition through interactions between TraA cell surface receptors, which leads to the fusion and exchange of outer membrane (OM) components. OM exchange is shown to be selective among 17 environmental isolates, as exchange partners parsed into five major recognition groups. TraA is the determinant of molecular specificity because: (i) exchange partners correlated with sequence conservation within its polymorphic PA14-like domain and (ii) traA allele replacements predictably changed partner specificity. Swapping traA alleles also reprogrammed social interactions among strains, including the regulation of motility and conferred immunity from inter-strain killing. We suggest that TraA helps guide the transition of single cells into a coherent bacterial community, by a proposed mechanism that is analogous to mitochondrial fusion and fission cycling that mixes contents to establish a homogenous population. In evolutionary terms, traA functions as a rare greenbeard gene that recognizes others that bear the same allele to confer beneficial treatment.  相似文献   

2.
Upon physical contact with sibling cells, myxobacteria transiently fuse their outer membranes (OMs) and exchange OM proteins and lipids. From previous work, TraA and TraB were identified to be essential factors for OM exchange (OME) in donor and recipient cells. To define the genetic complexity of OME, we carried out a comprehensive forward genetic screen. The screen was based on the observation that Myxococcus xanthus nonmotile cells, by a Tra-dependent mechanism, block swarm expansion of motile cells when mixed. Thus, mutants defective in OME or a downstream responsive pathway were readily identified as escape flares from mixed inocula seeded on agar. This screen was surprisingly powerful, as we found >50 mutants defective in OME. Importantly, all of the mutations mapped to the traAB operon, suggesting that there may be few, if any, proteins besides TraA and TraB directly required for OME. We also found a second and phenotypically different class of mutants that exhibited wild-type OME but were defective in a responsive pathway. This pathway is postulated to control inner membrane homeostasis by covalently attaching amino acids to phospholipids. The identified proteins are homologous to the Staphylococcus aureus MprF protein, which is involved in membrane adaptation and antibiotic resistance. Interestingly, we also found that a small number of nonmotile cells were sufficient to block the swarming behavior of a large gliding-proficient population. This result suggests that an OME-derived signal could be amplified from a few nonmotile producers to act on many responder cells.  相似文献   

3.
Genetically similar cells of the soil bacterium Myxococcus xanthus cooperate at multiple social behaviours, including motility and multicellular development. Another social interaction in this species is outer membrane exchange (OME), a behaviour of unknown primary benefit in which cells displaying closely related variants of the outer membrane protein TraA transiently fuse and exchange membrane contents. Functionally incompatible TraA variants do not mediate OME, which led to the proposal that TraA incompatibilities determine patterns of intercellular cooperation in nature, but how this might occur remains unclear. Using natural isolates from a centimetre‐scale patch of soil, we analyse patterns of TraA diversity and ask whether relatedness at TraA is causally related to patterns of kin discrimination in the form of both colony‐merger incompatibilities (CMIs) and interstrain antagonisms. A large proportion of TraA functional diversity documented among global isolates is predicted to be contained within this cm‐scale population. We find evidence of balancing selection on the highly variable PA14‐portion of TraA and extensive transfer of traA alleles across genomic backgrounds. CMIs are shown to be common among strains identical at TraA, suggesting that CMIs are not generally caused by TraA dissimilarity. Finally, it has been proposed that interstrain antagonisms might be caused by OME‐mediated toxin transfer. However, we predict that most strain pairs previously shown to exhibit strong antagonisms are incapable of OME due to TraA dissimilarity. Overall, our results suggest that most documented patterns of kin discrimination in a natural population of M. xanthus are not causally related to the TraA sequences of interactants.  相似文献   

4.
Biofilms are dense microbial communities. Although widely distributed and medically important, how biofilm cells interact with one another is poorly understood. Recently, we described a novel process whereby myxobacterial biofilm cells exchange their outer membrane (OM) lipoproteins. For the first time we report here the identification of two host proteins, TraAB, required for transfer. These proteins are predicted to localize in the cell envelope; and TraA encodes a distant PA14 lectin-like domain, a cysteine-rich tandem repeat region, and a putative C-terminal protein sorting tag named MYXO-CTERM, while TraB encodes an OmpA-like domain. Importantly, TraAB are required in donors and recipients, suggesting bidirectional transfer. By use of a lipophilic fluorescent dye, we also discovered that OM lipids are exchanged. Similar to lipoproteins, dye transfer requires TraAB function, gliding motility and a structured biofilm. Importantly, OM exchange was found to regulate swarming and development behaviors, suggesting a new role in cell-cell communication. A working model proposes TraA is a cell surface receptor that mediates cell-cell adhesion for OM fusion, in which lipoproteins/lipids are transferred by lateral diffusion. We further hypothesize that cell contact-dependent exchange helps myxobacteria to coordinate their social behaviors.  相似文献   

5.
Myxobacteria are social bacteria that exhibit a complex life cycle culminating in the development of multicellular fruiting bodies. The alignment of rod-shaped myxobacteria cells within populations is crucial for development to proceed. It has been suggested that myxobacteria align due to mechanical interactions between gliding cells and that cell flexibility facilitates reorientation of cells upon mechanical contact. However, these suggestions have not been based on experimental or theoretical evidence. Here we created a computational mass-spring model of a flexible rod-shaped cell that glides on a substratum periodically reversing direction. The model was formulated in terms of experimentally measurable mechanical parameters, such as engine force, bending stiffness, and drag coefficient. We investigated how cell flexibility and motility engine type affected the pattern of cell gliding and the alignment of a population of 500 mechanically interacting cells. It was found that a flexible cell powered by engine force at the rear of the cell, as suggested by the slime extrusion hypothesis for myxobacteria motility engine, would not be able to glide in the direction of its long axis. A population of rigid reversing cells could indeed align due to mechanical interactions between cells, but cell flexibility impaired the alignment.  相似文献   

6.
The bacteriocin encoding plasmid pPD1 from Enterococcus faecalis is involved in a mating response to the sex pheromone cPD1 produced by recipient bacterial cells devoid of pPD1. Previous studies showed that cPD1 is internalized into donor cells in a process in which TraC plays the role of cell surface pheromone receptor. Inside the recipient cells, the pheromone binds to the plasmid-encoded cytoplasmic protein TraA, able to recognize specific DNA sequences and to modulate the conjugation process. To avoid self-induction of the conjugation process, donor cells produce the inhibitor iPD1, which competes with cPD1. This study was designed to produce recombinant TraA and TraC in a functionally active state and to evaluate their main functional properties. We have isolated the sequences encoding TraA and TraC from the plasmid pPD1 and cloned them in suitable expression vectors. The two recombinant proteins were successfully obtained in a soluble form using Escherichia coli as expression host and a T7 inducible expression system. TraC and TraA were purified to homogeneity by three or two chromatographic steps, respectively, leading to a final yield up to 4 mg/l of cell culture for TraC and up to 10 mg/l of cell culture for TraA. The ability of TraA and TraC to bind the specific pheromone and inhibitor peptides has been assessed by means of ESI-mass spectrometry. Moreover, the ability of recombinant TraA to bind DNA has been demonstrated by means of electrophoretic mobility shift assay. Overall these results are consistent with the heterologously expressed TraC and TraA being functionally active.  相似文献   

7.
Cells interact with their surrounding environment through surface proteins. However, knowledge gaps remain in understanding how these important types of proteins are transported and anchored on the cell surface. In the Gram-negative social bacterium, Myxococcus xanthus, a putative C-terminal sorting tag (MYXO-CTERM) is predicted to help direct 34 different proteins onto the cell surface. Here we investigate the sorting pathway for MYXO-CTERM proteins by using the TraA cell surface receptor as a paradigm. Deleting this motif from TraA abolishes the cell surface anchoring and results in extracellular secretion. Our findings indicate that conserved cysteines within the MYXO-CTERM are posttranslationally modified and are required for TraA cell surface localization and function. A region immediately upstream of these residues is predicted to be disordered and removing this motif caused a secretion defect and blocked cell surface anchoring. We further show that the type II secretion system is required for translocation across the outer membrane and that a cysteine-rich region directs TraA to the T2SS. Similar results were found with another MYXO-CTERM protein indicating our findings can be generalized. Further, we show the universal distribution of MXYO-CTERM motif across the Myxococcales order and provide a working model for sorting of these proteins.  相似文献   

8.
Agrobacterium tumefaciens and Agrobacterium rhizogenes transfer plasmid-encoded genes and virulence (Vir) proteins into plant cells. The transferred DNA (T-DNA) is stably inherited and expressed in plant cells, causing crown gall or hairy root disease. DNA transfer from A. tumefaciens into plant cells resembles plasmid conjugation; single-stranded DNA (ssDNA) is exported from the bacteria via a type IV secretion system comprised of VirB1 through VirB11 and VirD4. Bacteria also secrete certain Vir proteins into plant cells via this pore. One of these, VirE2, is an ssDNA-binding protein crucial for efficient T-DNA transfer and integration. VirE2 binds incoming ssT-DNA and helps target it into the nucleus. Some strains of A. rhizogenes lack VirE2, but they still transfer T-DNA efficiently. We isolated a novel gene from A. rhizogenes that restored pathogenicity to virE2 mutant A. tumefaciens. The GALLS gene was essential for pathogenicity of A. rhizogenes. Unlike VirE2, GALLS contains a nucleoside triphosphate binding motif similar to one in TraA, a strand transferase conjugation protein. Despite their lack of similarity, GALLS substituted for VirE2.  相似文献   

9.
The outer membrane (OM) is an essential barrier that guards Gram-negative bacteria from diverse environmental insults. Besides functioning as a chemical gatekeeper, the OM also contributes towards the strength and stiffness of cells and allows them to sustain mechanical stress. Largely influenced by studies of Escherichia coli, the OM is viewed as a rigid barrier where OM proteins and lipopolysaccharides display restricted mobility. Here the discussion is extended to other bacterial species, with a focus on Myxococcus xanthus. In contrast to the rigid OM paradigm, myxobacteria possess a relatively fluid OM. It is concluded that the fluidity of the OM varies across environmental species, which is likely linked to their evolution and adaptation to specific ecological niches. Importantly, a fluid OM can endow bacteria with distinct functions for cell-cell and cell-environment interactions.  相似文献   

10.
Myxobacteria are social bacteria that upon starvation form multicellular fruiting bodies whose shape in different species can range from simple mounds to elaborate tree-like structures. The formation of fruiting bodies is a result of collective cell movement on a solid surface. In the course of development, groups of flexible rod-shaped cells form streams and move in circular or spiral patterns to form aggregation centers that can become sites of fruiting body formation. The mechanisms of such cell movement patterns are not well understood. It has been suggested that myxobacterial development depends on short-range contact-mediated interactions between individual cells, i.e. cell aggregation does not require long-range signaling in the population. In this study, by means of a computational mass-spring model, we investigate what types of short-range interactions between cells can result in the formation of streams and circular aggregates during myxobacterial development. We consider short-range head-to-tail guiding between individual cells, whereby movement direction of the head of one cell is affected by the nearby presence of the tail of another cell. We demonstrate that stable streams and circular aggregates can arise only when the trailing cell, in addition to being steered by the tail of the leading cell, is able to speed up to catch up with it. It is suggested that necessary head-to-tail interactions between cells can arise from physical adhesion, response to a diffusible substance or slime extruded by cells, or pulling by motility engine pili. Finally, we consider a case of long-range guiding between cells and show that circular aggregates are able to form without cells increasing speed. These findings present a possibility to discriminate between short-range and long-range guiding mechanisms in myxobacteria by experimentally measuring distribution of cell speeds in circular aggregates.  相似文献   

11.
Agrobacterium tumefaciens and Agrobacterium rhizogenes are closely related plant pathogens that cause different diseases, crown gall and hairy root. Both diseases result from transfer, integration, and expression of plasmid-encoded bacterial genes located on the transferred DNA (T-DNA) in the plant genome. Bacterial virulence (Vir) proteins necessary for infection are also translocated into plant cells. Transfer of single-stranded DNA (ssDNA) and Vir proteins requires a type IV secretion system, a protein complex spanning the bacterial envelope. A. tumefaciens translocates the ssDNA-binding protein VirE2 into plant cells, where it binds single-stranded T-DNA and helps target it to the nucleus. Although some strains of A. rhizogenes lack VirE2, they are pathogenic and transfer T-DNA efficiently. Instead, these bacteria express the GALLS protein, which is essential for their virulence. The GALLS protein can complement an A. tumefaciens virE2 mutant for tumor formation, indicating that GALLS can substitute for VirE2. Unlike VirE2, GALLS contains ATP-binding and helicase motifs similar to those in TraA, a strand transferase involved in conjugation. Both GALLS and VirE2 contain nuclear localization sequences and a C-terminal type IV secretion signal. Here we show that mutations in any of these domains abolished the ability of GALLS to substitute for VirE2.  相似文献   

12.
The myxobacteria are Gram-negative organisms that are capable of multicellular, social behaviour. In the presence of nutrients, swarms of myxobacteria feed cooperatively by sharing extracellular digestive enzymes, and can prey on other bacteria. When the food supply runs low, they initiate a complex developmental programme that culminates in the production of a fruiting body. Myxobacteria move by gliding and have two, polarly positioned engines to control their motility. The two engines undergo coordinated reversals, and changes in the reversal frequency and speed are responsible for the different patterns of movement that are seen during development. The myxobacteria communicate with each other and coordinate their movements through a cell-contact-dependent signal. Here, the cell movements that culminate in the development of the multicellular fruiting body are reviewed.  相似文献   

13.
F-pilin, the 70-amino-acid F-pilus subunit, accumulates in the cell envelope of F+strains in a process that requires interactions between its precursor (the traA gene product) and other host and F-encoded proteins. Here, we have used a set of (traA-phoA) genes to explore the effects of different TraA domains on the synthesis and membrane insertion of TraA-PhoA fusion proteins, particularly in relation to other F-encoded gene products. The 51-amino-acid TraA leader peptide fused directly to alkaline phosphatase was synthesized at comparable rates and incorporated rapidly and efficiently into the inner membrane in F' and F? cells. A second fusion gene encoded the TraA leader peptide and the first 51 amino acids of F-pilin itself fused to PhoA (TraA'-'PhoA-102 polypeptide). Alkaline phosphatase activities and patterns of pulse-labelled polypeptides indicated that TraA'-'PhoA-102 was synthesized at comparable rates in F' and F? cells, but in neither was the TraA'-'PhoA-102 polypeptide efficiently processed as a membrane protein. A third gene encoded the entire 121-amino-acid TraA polypeptide fused to PhoA (TraA-'PhoA-121 polypeptide). About 70% of the pulse-labelled TraA-'PhoA-121 polypeptide was rapidly processed in F'cells, where it accumulated in the cell envelope as active alkaline phosphatase, whereas in F- cells, >5% of the pulse-labelled polypeptide was processed. Additionally, the apparent rate of TraA-'PhoA-121 polypeptide synthesis was threefold higher in F'cells. The traQ gene alone could not substitute for F in restoring TraA-'PhoA-121 (or wild-type F-pilin) accumulation.  相似文献   

14.
Swarming, a collective motion of many thousands of cells, produces colonies that rapidly spread over surfaces. In this paper, we introduce a cell-based model to study how interactions between neighboring cells facilitate swarming. We chose to study Myxococcus xanthus, a species of myxobacteria, because it swarms rapidly and has well-defined cell–cell interactions mediated by type IV pili and by slime trails. The aim of this paper is to test whether the cell contact interactions, which are inherent in pili-based S motility and slime-based A motility, are sufficient to explain the observed expansion of wild-type swarms. The simulations yield a constant rate of swarm expansion, which has been observed experimentally. Also, the model is able to quantify the contributions of S motility and A motility to swarming. Some pathogenic bacteria spread over infected tissue by swarming. The model described here may shed some light on their colonization process.  相似文献   

15.
Conjugative transfer of DNA that occurs between bacteria also operates between bacteria and higher organisms. The transfer of DNA between Gram-negative bacteria requires initial contact by a sex pilus followed by DNA traversing four membranes (donor plus recipient) using a transmembrane pore. Accumulating evidence suggests that transfer of the T-DNA from Agrobacterium tumefaciens to plants may also occur via a conjugative mechanism. The virB operon of the Ti plasmid exhibits close homologies to genes that are known to encode the pilin subunits and pilin assembly proteins. The proteins encoded by the PilW operon of IncW plasmid R388 share strong similarities (average similarity=50.8%) with VirB proteins. Similarly, the TraA, TraL and TraC proteins of IncF plasmid F have similarities to VirB2, VirB3 and VirB4 respectively (average similarity = 45.3%). VirB2 protein (12.3 kDa) contains a signal peptidase-I cleavage sequence that generates a polypeptide of 7.2 kDa. Likewise, the 12.8 kDa propilin protein TraA of plasmid F also possesses a peptidase-I cleavage site that generates the 7.2 kDa pilin structural protein. Similar amino acid sequences of the conjugative transfer genes of F, R388 as well as plasmid RP4 and the genes of the ptl operon of Bortedella pertussis suggest the existence of a superfamily of transmembrane proteins adapted to the promiscuous transfer of DNA-protein complexes.  相似文献   

16.
粘细菌基因组学研究进展   总被引:3,自引:2,他引:1  
粘细菌(Myxobacteria)隶属于δ变形菌纲(Deltaproteobacteria)的粘球菌目(Myxococcales),是一类革兰氏阴性杆状细菌。它是继放线菌和真菌之后又一重要的活性次级代谢产物产生菌,尽管如此,由于分离纯化困难,粘细菌的研究进展一直较为缓慢。随着测序技术的进步和生物信息学的应用,大量粘细菌基因组被完成测序和报道。本文对粘细菌研究意义及该类资源开发价值、分离培养存在的困难进行了阐述,对粘细菌基因组注释及目前已测菌株的全基因组进行了归纳总结,同时介绍了基因组学在粘细菌生态、捕食机制、子实体形成以及次级代谢产物合成方面的研究进展。本文有助于了解基因组学在粘细菌研究中的重要价值,为联合应用多组学技术深入研究粘细菌代谢机制和社会性行为提供了参考,对粘细菌基础研究、资源发掘和开发利用具有重要意义。  相似文献   

17.
不同分离方法对子实体形成和粘细菌分离的影响   总被引:1,自引:0,他引:1  
【目的】基于模拟原位环境策略、可培养粘细菌的营养策略及细菌互作网络,改良分离培养基,以提高分离粘细菌的多样性。【方法】通过添加土壤浸提液、使用不同种类的诱导菌和改变诱导菌的接种方式设置分离方法,同时以传统的分离方法作对照。【结果】改良的分离方法比对照组诱导出了更多粘细菌子实体种类,采自4个地区的9份样品共分离纯化出40株粘细菌,按形态学和分子生物学,将其归类于原囊菌属(Archangium)、珊瑚菌属(Corallococcus)、软骨霉状菌属(Chondromyces)、粘球菌属(Myxococcus)、侏囊菌属(Nannocystis)、多囊菌属(Polyangium)、匣状球菌属(Pyxidicoccus)。【结论】与传统分离方法相比,添加土壤浸提液,诱导菌点接法能大大提高诱导出的粘细菌子实体种类的数目,革兰氏阳性菌和革兰氏阴性菌作为诱导菌对子实体种类影响较小,但是也发现革兰氏阳性菌特异性诱导出的子实体。虽然本研究通过对分离培养基的改良大大增加了子实体种类,但是纯化出的粘细菌种类远少于观察到的子实体种类,说明除改良分离方法外,还需进一步研究粘细菌的纯化方法,提高分离所得粘细菌的多...  相似文献   

18.
19.
Abstract The virB operon of the Agrobacterium tumefaciens Ti plasmid encodes 11 proteins. Specific antisera to VirB2, VirB3 and VirB9 were used to locate these virulence proteins in the A. tumefaciens cell. Immunoblot analysis located VirB2 protein to the inner and outer membranes; VirB3 and VirB9 were likewise associated with both membranes, but mainly in the outer membrane. VirB2 is processed from a 12.3-kDa protein into a 7.2-kDa polypeptide. Such sized protein results from cleavage at residue Ala47, upstream of which two additional alanine residues Ala45-Ala46 are contained and bearing resemblance to a signal peptide peptidase-I cleavage sequence. VirB2 and VirB3 sequences are strikingly similar to the pilin biosynthetic proteins TraA and TraL encoded by the tra operon of F and R1-19 plasmids. Since traA encodes a propilin that is cleaved into a 7.2-kDa conjugative pilin product and since this cleavage site is present in both TraA and VirB2, we propose that virB2 encodes a pilin-like protein which together with VirB3 and VirB9 as well as other VirB proteins may be used for interkingdom T-DNA transfer between bacteria and plants.  相似文献   

20.
Microbial biofilms represent heterogeneous populations of cells that form intimate contacts. Within these populations cells communicate, cooperate and compete. Myxobacteria are noted for their complex social interactions, including gliding motility and lipoprotein exchange. Here, we investigated cis protein sequence and cellular behaviour requirements for lipoprotein transfer between Myxococcus xanthus cells. Specifically, an outer membrane (OM) type II signal sequence (SS) fused to the heterologous mCherry fluorescent reporter resulted in OM localization. When donor cells harbouring SS(OM)-mCherry were mixed with GFP-labelled recipient cells they developed red fluorescence. Our results surprisingly showed that a type II SS for OM localization, but not inner membrane localization, was necessary and sufficient for rapid and efficient heterologous protein transfer. Importantly, transfer did not occur in liquid or on surfaces where cells were poorly aligned. We conclude that cell-cell contact and alignment is a critical step for lipoprotein exchange. We hypothesize that protein transfer facilitates cooperative myxobacteria behaviours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号