首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Epigenome-wide DNA methylation association studies have identified highly replicable genomic loci sensitive to maternal smoking during gestation. The role of inter-individual genetic variation in influencing DNA methylation, leading to the possibility of confounding or bias of such associations, has not been assessed. We investigated whether the DNA methylation levels at the top 10 CpG sites previously associated with exposure to maternal smoking during gestation were associated with individual genetic variation at the genome-wide level. Genome-wide association tests between DNA methylation at the top 10 candidate CpG and genome-wide SNPs were performed in 736 case and control participants of the California Childhood Leukemia Study. Three of the strongest maternal-smoking sensitive CpG sites in newborns were significantly associated with SNPs located proximal to each gene: cg18146737 in the GFI1 gene with rs141819830 (P = 8.2×10?44), cg05575921 in the AHRR gene with rs148405299 (P = 5.3×10?10), and cg12803068 in the MYO1G gene with rs61087368 (P = 1.3×10?18). For the GFI1 CpG cg18146737, the underlying genetic variation at rs141819830 confounded the association between maternal smoking and DNA methylation in our data (the regression coefficient changed from ?0.02 [P = 0.139] to ?0.03 [P = 0.015] after including the genotype). Our results suggest that further studies using DNA methylation at cg18146737, cg05575921, or cg12803068 that aim to assess exposure to maternal smoking during gestation should include genotype at the corresponding SNP. New methods are required for adequate and routine inclusion of genotypic influence on DNA methylation in epigenome-wide association studies to control for potential confounding.  相似文献   

2.
《Epigenetics》2013,8(10):1382-1396
Smoking is a major risk factor in many diseases. Genome wide association studies have linked genes for nicotine dependence and smoking behavior to increased risk of cardiovascular, pulmonary, and malignant diseases. We conducted an epigenome wide association study in peripheral-blood DNA in 464 individuals (22 current smokers and 263 ex-smokers), using the Human Methylation 450 K array. Upon replication in an independent sample of 356 twins (41 current and 104 ex-smokers), we identified 30 probes in 15 distinct loci, all of which reached genome-wide significance in the combined analysis P < 5 × 10?8. All but one probe (cg17024919) remained significant after adjusting for blood cell counts. We replicated all 9 known loci and found an independent signal at CPOX near GPR15. In addition, we found 6 new loci at PRSS23, AVPR1B, PSEN2, LINC00299, RPS6KA2, and KIAA0087. Most of the lead probes (13 out of 15) associated with cigarette smoking, overlapped regions of open chromatin (FAIRE and DNaseI hypersensitive sites) or / and H3K27Ac peaks (ENCODE data set), which mark regulatory elements. The effect of smoking on DNA methylation was partially reversible upon smoking cessation for longer than 3 months. We report the first statistically significant interaction between a SNP (rs2697768) and cigarette smoking on DNA methylation (cg03329539). We provide evidence that the metSNP for cg03329539 regulates expression of the CHRND gene located circa 95 Kb downstream of the methylation site. Our findings suggest the existence of dynamic, reversible site-specific methylation changes in response to cigarette smoking , which may contribute to the extended health risks associated with cigarette smoking.  相似文献   

3.
Background

Endometriosis is a multifactorial estrogen dependent gynecological disease characterized by implantation of functional endometrial tissue at ectopic positions. Though this disease is benign, it is associated with an increased risk of malignant transformation. Epigenetic disruptions like aberrant DNA methylation, resulting changes in gene expression capacity, are important in tumor progression and malignant cellular transformation. Therefore, variation in genes involved in DNA methylation might lead to disease susceptibility.

Purpose

To investigate the association between DNA methyl transferases (DNMT1 and DNMT3B) single nucleotide polymorphisms (SNPs) and the risk of endometriosis in South Indian women.

Methods

In the present study, we examined the genotypic and allele distribution of DNMT1 (rs10423341C/A, rs2228611G/Aandrs4804490C/A) and DNMT3B (rs1569686G/T) among the endometriosis patients (n?=?150) and controls (n?=?150). The genotypes were analyzed by polymerase chain reaction (PCR) and sequencing methods. Haplotype frequencies for multiple loci and the standardized disequilibrium coefficient (D?) for pairwise linkage disequilibrium (LD) were surveyed by Haploview Software.

Result

Significant increase in the frequencies of DNMT1 rs10423341 (P?=?0.04601), rs2228611 (P?=?0.00175) and DNMT3B rs1569686 (P?=?0.033) genotypes and alleles was observed in patients compared to controls. In addition, the frequency of A/A/C (P?=?0.0065) haplotype was significantly high in patients. But the DNMT1 (rs4804490) SNP did not show significant association with the disease.

Conclusion

The DNMT1 and DNMT3B polymorphism may constitute an inheritable risk factor for endometriosis in South Indian women. To the best of our knowledge there is no reported study on the association of polymorphisms in DNMT1 and DNMT3B with endometriosis risk.

  相似文献   

4.
Smoking is a major risk factor in many diseases. Genome wide association studies have linked genes for nicotine dependence and smoking behavior to increased risk of cardiovascular, pulmonary, and malignant diseases. We conducted an epigenome wide association study in peripheral-blood DNA in 464 individuals (22 current smokers and 263 ex-smokers), using the Human Methylation 450 K array. Upon replication in an independent sample of 356 twins (41 current and 104 ex-smokers), we identified 30 probes in 15 distinct loci, all of which reached genome-wide significance in the combined analysis P < 5 × 10−8. All but one probe (cg17024919) remained significant after adjusting for blood cell counts. We replicated all 9 known loci and found an independent signal at CPOX near GPR15. In addition, we found 6 new loci at PRSS23, AVPR1B, PSEN2, LINC00299, RPS6KA2, and KIAA0087. Most of the lead probes (13 out of 15) associated with cigarette smoking, overlapped regions of open chromatin (FAIRE and DNaseI hypersensitive sites) or / and H3K27Ac peaks (ENCODE data set), which mark regulatory elements. The effect of smoking on DNA methylation was partially reversible upon smoking cessation for longer than 3 months. We report the first statistically significant interaction between a SNP (rs2697768) and cigarette smoking on DNA methylation (cg03329539). We provide evidence that the metSNP for cg03329539 regulates expression of the CHRND gene located circa 95 Kb downstream of the methylation site. Our findings suggest the existence of dynamic, reversible site-specific methylation changes in response to cigarette smoking , which may contribute to the extended health risks associated with cigarette smoking.  相似文献   

5.
Ghosh  Saurabh  Fardo  David W. 《BMC genetics》2018,19(1):127-131
Background

The GAW20 group formed on the theme of methods for association analyses of repeated measures comprised 4sets of investigators. The provided “real” data set included genotypes obtained from a human whole-genome association study based on longitudinal measurements of triglycerides (TGs) and high-density lipoprotein in addition to methylation levels before and after administration of fenofibrate. The simulated data set contained 200 replications of methylation levels and posttreatment TGs, mimicking the real data set.

Results

The different investigators in the group focused on the statistical challenges unique to family-based association analyses of phenotypes measured longitudinally and applied a wide spectrum of statistical methods such as linear mixed models, generalized estimating equations, and quasi-likelihood–based regression models. This article discusses the varying strategies explored by the group’s investigators with the common goal of improving the power to detect association with repeated measures of a phenotype.

Conclusions

Although it is difficult to identify a common message emanating from the different contributions because of the diversity in the issues addressed, the unifying theme of the contributions lie in the search for novel analytic strategies to circumvent the limitations of existing methodologies to detect genetic association.

  相似文献   

6.
Familial combined hyperlipidemia (FCHL) is a common lipid disorder characterized by the presence of multiple lipoprotein phenotypes that increase the risk of premature coronary heart disease. In a previous study, we identified an intragenic microsatellite marker within the protocadherin 15 (PCDH15) gene to be associated with high triglycerides (TGs) in Finnish dyslipidemic families. In this study we analyzed all four known nonsynonymous SNPs within PCDH15 in 1,268 individuals from Finnish and Dutch multigenerational families with FCHL. Association analyses of quantitative traits for SNPs were performed using the QTDT test. The nonsynonymous SNP rs10825269 resulted in a P = 0.0006 for the quantitative TG trait. Additional evidence for association was observed with the same SNP for apolipoprotein B levels (apo-B) (P = 0.0001) and total cholesterol (TC) levels (P = 0.001). None of the other three SNPs tested showed a significant association with any lipid-related trait. We investigated the expression of PCDH15 in different human tissues and observed that PCDH15 is expressed in several tissues including liver and pancreas. In addition, we measured the plasma lipid levels in mice with loss-of-function mutations in Pcdh15 (Pcdh15av-Tg and Pcdh15av-3J) to investigate possible abnormalities in their lipid profile. We observed a significant difference in plasma TG and TC concentrations for the Pcdh15av-3J carriers when compared with the wild type (P = 0.013 and P = 0.044, respectively). Our study suggests that PCDH15 is associated with lipid abnormalities.  相似文献   

7.
Epigenetic control of human immunodeficiency virus-1 (HIV-1) genes is critical for viral integration and latency. However, epigenetic changes in the HIV-1-infected host genome have not been well characterized. Here, we report the first large-scale epigenome-wide association study of DNA methylation for HIV-1 infection. We recruited HIV-infected (n = 261) and uninfected (n = 117) patients from the Veteran Aging Cohort Study (VACS) and all samples were profiled for 485,521 CpG sites in DNA extracted from the blood. After adjusting for cell type and clinical confounders, we identified 20 epigenome-wide significant CpGs for HIV-1 infection. Importantly, 2 CpGs in the promoter of the NLR family, CARD domain containing gene 5 (NLRC5), a key regulator of major histocompatibility complex class I gene expression, showed significantly lower methylation in HIV-infected subjects than in uninfected subjects (cg07839457: t = ?6.03, Pnominal = 4.96 × 10?9; cg16411857: t = ?7.63, Pnominal = 3.07 × 10?13). Hypomethylation of these 2 CpGs was replicated in an independent sample (GSE67705: cg07839457: t = ?4.44, Pnominal = 1.61 × 10?5; cg16411857: t = ?5.90; P = 1.99 × 10?8). Methylation of these 2 CpGs in NLRC5 was negatively correlated with viral load in the 2 HIV-infected samples (cg07839457: P = 1.8 × 10?4; cg16411857: P = 0.03 in the VACS; and cg07839457: P = 0.04; cg164111857: P = 0.01 in GSE53840). Our findings demonstrate that differential DNA methylation is associated with HIV infection and suggest the involvement of a novel host gene, NLRC5, in HIV pathogenesis.  相似文献   

8.
9.
Li  Liming  Wang  Chan  Lu  Tianyuan  Lin  Shili  Hu  Yue-Qing 《BMC genetics》2018,19(1):33-37
Background

Association studies using a single type of omics data have been successful in identifying disease-associated genetic markers, but the underlying mechanisms are unaddressed. To provide a possible explanation of how these genetic factors affect the disease phenotype, integration of multiple omics data is needed.

Results

We propose a novel method, LIPID (likelihood inference proposal for indirect estimation), that uses both single nucleotide polymorphism (SNP) and DNA methylation data jointly to analyze the association between a trait and SNPs. The total effect of SNPs is decomposed into direct and indirect effects, where the indirect effects are the focus of our investigation. Simulation studies show that LIPID performs better in various scenarios than existing methods. Application to the GAW20 data also leads to encouraging results, as the genes identified appear to be biologically relevant to the phenotype studied.

Conclusions

The proposed LIPID method is shown to be meritorious in extensive simulations and in real-data analyses.

  相似文献   

10.

The microalgae Scenedesmus abundans cultivated in five identical airlift photobioreactors (PBRs) in batch and fed-batch modes at the outdoor tropical condition. The microalgae strain S. abundans was found to tolerate high temperature (35–45 °C) and high light intensity (770–1690 µmol m− 2 s− 1). The highest biomass productivities were 152.5–162.5 mg L− 1 day− 1 for fed-batch strategy. The biomass productivity was drastically reduced due to photoinhibition effect at a culture temperature of > 45 °C. The lipid compositions showed fatty acids mainly in the form of saturated and monounsaturated fatty acids (> 80%) in all PBRs with Cetane number more than 51. The fed-batch strategies efficiently produced higher biomass and lipid productivities at harsh outdoor conditions. Furthermore, the microalgae also accumulated omega-3 fatty acid (C18:3) up to 14% (w/w) of total fatty acid at given outdoor condition.

  相似文献   

11.
Recent discoveries indicate a genetic basis for high-altitude adaptation among human groups who have resided at high altitude for millennia, including Andeans, Tibetans, and Ethiopians. Yet, genetics alone does not explain the extent of variation in altitude-adaptive phenotypes. Current and past environments may also play a role, and one way to determine the effect of the environment is through the epigenome. To characterize if Andean adaptive responses to high altitude have an epigenetic component, we analyzed DNA methylation of the promoter region of EPAS1 and LINE-1 repetitive element among 572 Quechua individuals from high- (4,388 m) and low-altitude (0 m) in Peru. Participants recruited at high altitude had lower EPAS1 DNA methylation and higher LINE-1 methylation. Altitude of birth was associated with higher LINE-1 methylation, not with EPAS1 methylation. The number of years lived at high altitude was negatively associated with EPAS1 methylation and positively associated with LINE-1 methylation. We found four one-carbon metabolism SNPs (MTHFD1 rs2236225, TYMS rs502396, FOLH1 rs202676, GLDC rs10975681) that cumulatively explained 11.29% of the variation in average LINE-1 methylation. And identified an association between LINE-1 methylation and genome-wide SNP principal component 1 that distinguishes European from Indigenous American ancestry suggesting that European admixture decreases LINE-1 methylation. Our results indicate that both current and lifetime exposure to high-altitude hypoxia have an effect on EPAS1 and LINE-1 methylation among Andean Quechua, suggesting that epigenetic modifications may play a role in high-altitude adaptation.  相似文献   

12.
We performed a genome-wide association study with 23,465 microsatellite markers to identify genes related to adult height. Selective genotyping was applied to extremely tall and extremely short individuals from the Khalkh-Mongolian population. Two loci, 8q21.13 and 15q22.33, which showed the strongest association with microsatellites were subjected to further analyses of SNPs in 782 tall and 773 short individuals. The most significant association was observed with SNP rs2220456 at 8q21.13 (P = 0.000016). In the LD block at 15q22.32, SNP rs8038652 located in intron 1 of IQCH was strongly associated (P = 0.0003), especially the AA genotype of the SNP under a recessive model was strongly associated with adult height (P = 0.000046).  相似文献   

13.
Introduction

An increased body mass index (BMI) (>25 kg/m2) is associated with a wide range of electrocardiographic changes. However, the association between electrocardiographic changes and BMI in healthy young individuals with a normal BMI (18.5–25 kg/m2) is unknown. The aim of this study was to evaluate the association between BMI and electrocardiographic parameters.

Methods

Data from 1,290 volunteers aged 18 to 30 years collected at our centre were analysed. Only subjects considered healthy by a physician after review of collected data with a normal BMI and in sinus rhythm were included in the analysis. Subjects with a normal BMI (18.5–25 kg/m2) were divided into BMI quartiles analysis and a backward multivariate regression analysis with a normal BMI as a continuous variable was performed.

Results

Mean age was 22.7 ± 3.0 years, mean BMI was 22.0, and 73.4% were male. There were significant differences between the BMI quartiles in terms of maximum P-wave duration, P-wave balance, total P-wave area in lead V1, PR-interval duration, and heart axis. In the multivariate model maximum P-wave duration (standardised coefficient (SC) = +0.112, P < 0.001), P-wave balance in lead V1 (SC = +0.072, P < 0.001), heart axis (SC = −0.164, P < 0.001), and Sokolow-Lyon voltage (SC = −0.097, P < 0.001) were independently associated with BMI.

Conclusion

Increased BMI was related with discrete electrocardiographic alterations including an increased P-wave duration, increased P-wave balance, a leftward shift of the heart axis, and decreased Sokolow-Lyon voltage on a standard twelve lead electrocardiogram in healthy young individuals with a normal BMI.

  相似文献   

14.
The circadian clock regulates the daily rhythms of several physiological and behavioral processes. Disruptions in clock genes have been associated with obesity and related comorbidities. This study aimed to analyze the association of DNA methylation signatures at circadian rhythm pathway genes with body mass index (BMI), metabolic profiles and dietary intakes. DNA methylation profiling was determined by microarray in white blood cells from 474 adults from the Methyl Epigenome Network Association (MENA) project. Kyoto Encyclopedia of Genes and Genomes database was used to identify the genes integrating the circadian rhythm pathway. Network enrichment analyses were performed with the PathDIP platform. Associations between circadian methylation patterns with anthropometric measurements, the metabolic profile, clinical data and dietary intakes were analyzed. DNA methylation patterns of nine CpG sites at six circadian rhythm pathway genes were strongly correlated with BMI (false discovery rates <0.0001). These CpGs encompassed cg09578018 (RORA), cg20406576 (PRKAG2), cg10059324 (PER3), cg01180628 (BHLHE40), cg23871860 (FBXL3), cg16964728 (RORA), cg14129040 (CREB1), cg07012178 (PRKAG2) and cg24061580 (PRKAG2). Interestingly, network enrichment analyses revealed that the six BMI-associated genes statistically contributed to the regulation of the circadian rhythm pathway (p = 1.9E-10). In addition, methylation signatures at cg09578018 (RORA), cg24061580 (PRKAG2), cg01180628 (BHLHE40) and cg10059324 (PER3) also correlated with insulin resistance (p < 0.0001) and mean arterial blood pressure (p < 0.0001). Furthermore, relevant correlations (p < 0.05) between methylation at cg09578018 (RORA) and cg01180628 (BHLHE40) with total energy and carbohydrate intakes were found. This investigation revealed potential associations of DNA methylation profiles at circadian genes with obesity, metabolic disturbances and carbohydrate intake, with potential impact on weight homeostasis.  相似文献   

15.
Recently, a significant epigenetic component in the pathology of suicide has been realized. Here we investigate candidate functional SNPs in epigenetic‐regulatory genes, DNMT1 and DNMT3B, for association with suicide attempt (SA) among patients with co‐existing psychiatric illness. In addition, global DNA methylation levels [5‐methyl cytosine (5‐mC%)] between SA and psychiatric controls were quantified using the Methylflash Methylated DNA Quantification Kit. DNA was obtained from blood of 79 suicide attempters and 80 non‐attempters, assessed for DSM‐IV Axis I disorders. Functional SNPs were selected for each gene (DNMT1; n = 7, DNMT3B; n = 10), and genotyped. A SNP (rs2424932) residing in the 3′ UTR of the DNMT3B gene was associated with SA compared with a non‐attempter control group (P = 0.001; Chi‐squared test, Bonferroni adjusted P value = 0.02). Moreover, haplotype analysis identified a DNMT3B haplotype which differed between cases and controls, however this association did not hold after Bonferroni correction (P = 0.01, Bonferroni adjusted P value = 0.56). Global methylation analysis showed that psychiatric patients with a history of SA had significantly higher levels of global DNA methylation compared with controls (P = 0.018, Student's t‐test). In conclusion, this is the first report investigating polymorphisms in DNMT genes and global DNA methylation quantification in SA risk. Preliminary findings suggest that allelic variability in DNMT3B may be relevant to the underlying diathesis for suicidal acts and our findings support the hypothesis that aberrant DNA methylation profiles may contribute to the biology of suicidal acts. Thus, analysis of global DNA hypermethylation in blood may represent a biomarker for increased SA risk in psychiatric patients.  相似文献   

16.

Background

We previously identified an association between a mismatch repair gene, MLH1, promoter SNP (rs1800734) and microsatellite unstable (MSI-H) colorectal cancers (CRCs) in two samples. The current study expanded on this finding as we explored the genetic basis of DNA methylation in this region of chromosome 3. We hypothesized that specific polymorphisms in the MLH1 gene region predispose it to DNA methylation, resulting in the loss of MLH1 gene expression, mismatch-repair function, and consequently to genome-wide microsatellite instability.

Methodology/Principal Findings

We first tested our hypothesis in one sample from Ontario (901 cases, 1,097 controls) and replicated major findings in two additional samples from Newfoundland and Labrador (479 cases, 336 controls) and from Seattle (591 cases, 629 controls). Logistic regression was used to test for association between SNPs in the region of MLH1 and CRC, MSI-H CRC, MLH1 gene expression in CRC, and DNA methylation in CRC. The association between rs1800734 and MSI-H CRCs, previously reported in Ontario and Newfoundland, was replicated in the Seattle sample. Two additional SNPs, in strong linkage disequilibrium with rs1800734, showed strong associations with MLH1 promoter methylation, loss of MLH1 protein, and MSI-H CRC in all three samples. The logistic regression model of MSI-H CRC that included MLH1-promoter-methylation status and MLH1 immunohisotchemistry status fit most parsimoniously in all three samples combined. When rs1800734 was added to this model, its effect was not statistically significant (P-value  = 0.72 vs. 2.3×10−4 when the SNP was examined alone).

Conclusions/Significance

The observed association of rs1800734 with MSI-H CRC occurs through its effect on the MLH1 promoter methylation, MLH1 IHC deficiency, or both.  相似文献   

17.
The genome‐wide association study by Herbert et al. identified the INSIG2 single‐nucleotide polymorphism (SNP) rs7566605 as contributing to increased BMI in ethnically distinct cohorts. The present study sought to further clarify the matter, by testing whether SNPs of INSIG2 influenced quantitative adiposity or glucose homeostasis traits in Hispanics of the Insulin Resistance Atherosclerosis Family Study (IRASFS). Using a tagging SNP approach, rs7566605 and 31 additional SNPs were genotyped in 1,425 IRASFS Hispanics. SNPs were tested for association with six adiposity measures: BMI, waist circumference (WAIST), waist‐to‐hip ratio (WHR), subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and VAT to SAT ratio (VSR). SNPs were also tested for association with fasting glucose (GFAST), fasting insulin (FINS), and three measures obtained from the frequently sampled intravenous glucose tolerance test: insulin sensitivity (SI), acute insulin response (AIR), and disposition index (DI). Most prominent association was observed with direct computed tomography (CT)‐measured adiposity phenotypes, including VAT, SAT, and VSR (P values range from 0.007 to 0.044 for rs17586756, rs17047718, rs17047731, rs9308762, rs12623648, and rs11673900). Multiple SNP associations were observed with all glucose homeostasis traits (P values range from 0.001 to 0.031 for rs17047718, rs17047731, rs2161829, rs10490625, rs889904, and rs12623648). Using BMI as a covariate in evaluation of glucose homeostasis traits slightly reduced their association. However, association with adiposity and glucose homeostasis phenotypes is not significant following multiple comparisons adjustment. Trending association after multiple comparisons adjustment remains suggestive of a role for genetic variation of INSIG2 in obesity, but these results require validation.  相似文献   

18.
A previous expression profiling of visceral adipose tissue (VAT) revealed that the immune response gene interferon-gamma-inducible protein 30 (IFI30) gene was 1.72-fold more highly expressed in non-diabetic severely obese men with the metabolic syndrome as compared to those without. Given the importance of low-grade inflammation in obesity-related metabolic complications, we hypothesized that variants in the IFI30 gene are associated with cardiovascular disease (CVD) risk factors. A detailed genetic investigation was performed at the IFI30 locus by sequencing its promoter, exons and intron–exon junction boundaries using DNA of 25 severely obese men. Among the 21 sequence-derived single-nucleotide polymorphisms (SNPs), 5 tagged SNPs (covering 100% of the common SNPs identified) were genotyped in two independent samples of severely obese patients (total n = 1,283). Using a multistage experimental design, chi-square analyses and logistic regressions were performed to compare genotype frequencies and compute odds-ratios (OR) for low and high CVD risk groups (dyslipidemia, hyperglycemia/diabetes and hypertension). A significant association was observed with the non-synonymous SNP rs11554159 (p.R76Q), where GA individuals showed lower risk (OR = 0.67; P = 0.0009) for hyperglycemia/diabetes as compared to homozygotes for the major allele (GG). No association was observed between rs11554159 and VAT IFI30 mRNA levels (P = 0.81), and the expression levels were not correlated with fasting plasma glucose levels (P = 0.31) in 112 non-diabetic severely obese women. The localization of rs11554159 near the active site of IFI30 suggests a functional effect of this SNP. This study showed a novel association between rs11554159 (p.R76Q) polymorphism at the IFI30 locus and the risk of hyperglycemia/diabetes in severely obese individuals.  相似文献   

19.
Heschl's gyrus (HG) is a core region of the auditory cortex whose morphology is highly variable across individuals. This variability has been linked to sound perception ability in both speech and music domains. Previous studies show that variations in morphological features of HG, such as cortical surface area and thickness, are heritable. To identify genetic variants that affect HG morphology, we conducted a genome‐wide association scan (GWAS) meta‐analysis in 3054 healthy individuals using HG surface area and thickness as quantitative traits. None of the single nucleotide polymorphisms (SNPs) showed association P values that would survive correction for multiple testing over the genome. The most significant association was found between right HG area and SNP rs72932726 close to gene DCBLD2 (3q12.1; P = 2.77 × 10?7). This SNP was also associated with other regions involved in speech processing. The SNP rs333332 within gene KALRN (3q21.2; P = 2.27 × 10?6) and rs143000161 near gene COBLL1 (2q24.3; P = 2.40 × 10?6) were associated with the area and thickness of left HG, respectively. Both genes are involved in the development of the nervous system. The SNP rs7062395 close to the X‐linked deafness gene POU3F4 was associated with right HG thickness (Xq21.1; P = 2.38 × 10?6). This is the first molecular genetic analysis of variability in HG morphology.  相似文献   

20.

Objective

Single nucleotide polymorphisms (SNPs) in apolipoprotein A5 (APOA5) gene are associated with triglyceride (TG) levels. However, the minor allele frequencies and linkage disequilibriums (LDs) of the SNPs in addition to their effects on TG levels vary greatly between Caucasians and East Asians. The distributions of the SNPs/haplotypes and their associations with TG levels in Uyghur population, an admixture population of Caucasians and East Asians, have not been reported to date. Here, we performed a cross-sectional study to address these.

Methods

Genotyping of four SNPs in APOA5 (rs662799, rs3135506, rs2075291, and rs2266788) was performed in 1174 unrelated Uyghur subjects. SNP/haplotype and TG association analyses were conducted.

Results

The frequencies of the SNPs in Uyghurs were in between those in Caucasians and East Asians. The LD between rs662799 and rs2266788 in Uyghurs was stronger than that in East Asians but weaker than that in Caucasians, and the four SNPs resulted in four haplotypes (TGGT, CGGC, TCGT, and CGTT arranged in the order of rs662799, rs3135506, rs2075291, and rs2266788) representing 99.2% of the population. All the four SNPs were significantly associated with TG levels. Compared with non-carriers, carriers of rs662799-C, rs3135506-C, rs2075291-T, and rs2266788-C alleles had 16.0%, 15.1%, 17.1%, and 12.4% higher TG levels, respectively. When haplotype TGGT was defined as the reference, the haplotypes CGGC, TCGT, and CGTT resulted in 16.1%, 19.0%, and 19.8% higher TG levels, respectively. The proportions of variance in TG explained by APOA5 locus were 2.5%, 0.3%, 0.4%, and 1.9% for single SNP rs662799, rs3135506, rs2075291, and rs2266788, respectively, and 3.0% for the haplotypes constructed by them.

Conclusions

The association profiles between the SNPs and haplotypes at APOA5 locus and TG levels in this admixture population differed from those in Caucasians and East Asians. The functions of these SNPs and haplotypes need to be elucidated comprehensively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号