共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
van Bloois E Nagamori S Koningstein G Ullers RS Preuss M Oudega B Harms N Kaback HR Herrmann JM Luirink J 《The Journal of biological chemistry》2005,280(13):12996-13003
YidC plays a role in the integration and assembly of many (if not all) Escherichia coli inner membrane proteins. Strikingly, YidC operates in two distinct pathways: one associated with the Sec translocon that also mediates protein translocation across the inner membrane and one independent from the Sec translocon. YidC is homologous to Alb3 and Oxa1 that function in the integration of proteins into the thylakoid membrane of chloroplasts and inner membrane of mitochondria, respectively. Here, we have expressed the conserved region of yeast Oxa1 in a conditional E. coli yidC mutant. We find that Oxa1 restores growth upon depletion of YidC. Data obtained from in vivo protease protection assays and in vitro cross-linking and folding assays suggest that Oxa1 complements the insertion of Sec-independent proteins but is unable to take over the Sec-associated function of YidC. Together, our data indicate that the Sec-independent function of YidC is conserved and essential for cell growth. 相似文献
3.
A reversible change in the ability of Escherichia coli ribosomes to bind to erythromycin 总被引:5,自引:0,他引:5
H Teraoka 《Journal of molecular biology》1970,48(3):511-515
4.
Fröderberg L Houben EN Baars L Luirink J de Gier JW 《The Journal of biological chemistry》2004,279(30):31026-31032
In Escherichia coli, two main protein targeting pathways to the inner membrane exist: the SecB pathway for the essentially posttranslational targeting of secretory proteins and the SRP pathway for cotranslational targeting of inner membrane proteins (IMPs). At the inner membrane both pathways converge at the Sec translocase, which is capable of both linear transport into the periplasm and lateral transport into the lipid bilayer. The Sec-associated YidC appears to assist the lateral transport of IMPs from the Sec translocase into the lipid bilayer. It should be noted that targeting and translocation of only a handful of secretory proteins and IMPs have been studied. These model proteins do not include lipoproteins. Here, we have studied the targeting and translocation of two secretory lipoproteins, the murein lipoprotein and the bacteriocin release protein, using a combined in vivo and in vitro approach. The data indicate that both murein lipoprotein and bacteriocin release protein require the SRP pathway for efficient targeting to the Sec translocase. Furthermore, we show that YidC plays an important role in the targeting/translocation of both lipoproteins. 相似文献
5.
6.
The mechanosensitive channel MscL in the inner membrane of Escherichia coli is a homopentameric complex involved in homeostasis when cells are exposed to hypo-osmotic conditions. The E. coli MscL protein is synthesized as a polypeptide of 136 amino acid residues and uses the bacterial signal recognition particle (SRP) for membrane targeting. The protein is inserted into the membrane independently of the Sec translocon. Mutants affected in the Sec-components are competent for MscL assembly. Translocation of the periplasmic domain was detected using a membrane-impermeant, sulfhydryl-specific gel-shift reagent. The modification of a single cysteine residue at position 68 indicated its translocation across the inner membrane. From these in vivo experiments, it is concluded that the electrical chemical membrane potential is not necessary for membrane insertion of MscL. However, depletion of the membrane insertase YidC inhibits translocation of the protein across the membrane. We show here that YidC is essential for efficient membrane insertion of the MscL protein. YidC is a component of a recently identified membrane insertion pathway that is evolutionarily conserved in bacteria, mitochondria and chloroplasts. 相似文献
7.
8.
Wu Wang Xiaolu Su Xiaobing Wang Juanjuan Yang Ting Zhang Maofeng Wang Rugen Wan Guoqiang Tan Jianxin Lu 《Protein science : a publication of the Protein Society》2014,23(11):1619-1628
Escherichia coli DNA topoisomerase I (TopA) contains a 67 kDa N‐terminal catalytic domain and a 30 kDa C‐terminal zinc‐binding region (ZD domain) which has three adjacent tetra‐cysteine zinc‐binding motifs. Previous studies have shown that E. coli TopA can bind both iron and zinc, and that iron binding in TopA results in failure to unwind the negatively supercoiled DNA. Here, we report that each E. coli TopA monomer binds one atom of iron via the first two zinc‐binding motifs in ZD domain and both the first and second zinc‐binding motifs are required for iron binding in TopA. The site‐directed mutagenesis studies further reveal that while the mutation of the third zinc‐binding motif has very little effect on TopA's activity, mutation of the first two zinc‐binding motifs in TopA greatly diminishes the topoisomerase activity in vitro and in vivo, indicating that the first two zinc‐binding motifs in TopA are crucial for its function. The DNA‐binding activity assay and intrinsic tryptophan fluorescence measurements show that iron binding in TopA may decrease the single‐stranded (ss) DNA‐binding activity of ZD domain and also change the protein structure of TopA, which subsequently modulate topoisomerase activity. 相似文献
9.
Kiani A. J. Arkus Gardner Desmond A. Moore Harold P. Erickson 《Molecular microbiology》2013,89(2):264-275
The tubulin homologue FtsZ provides the cytoskeletal framework and constriction force for bacterial cell division. FtsZ has an ~ 50‐amino‐acid (aa) linker between the protofilament‐forming globular domain and the C‐terminal (Ct) peptide that binds FtsA and ZipA, tethering FtsZ to the membrane. This Ct‐linker is widely divergent across bacterial species and thought to be an intrinsically disordered peptide (IDP). We confirmed that the Ct‐linkers from three bacterial species behaved as IDPs in vitro by circular dichroism and trypsin proteolysis. We made chimeras, swapping the Escherichia coli linker for Ct‐linkers from other bacteria, and even for an unrelated IDP from human α‐adducin. Most substitutions allowed for normal cell division, suggesting that sequence of the IDP did not matter. With few exceptions, almost any sequence appears to work. Length, however, was important: IDPs shorter than 43 or longer than 95 aa had compromised or no function. We conclude that the Ct‐linker functions as a flexible tether between the globular domain of FtsZ in the protofilament, and its attachment to FtsA/ZipA at the membrane. Modelling the Ct‐linker as a worm‐like chain, we predict that it functions as a stiff entropic spring linking the bending protofilaments to the membrane. 相似文献
10.
Aim: To isolate eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) genes from Shewanella baltica MAC1 and to examine recombinant production of EPA and DHA in E. coli to investigate cost‐effective, sustainable and convenient alternative sources for fish oils. Methods and Results: A fosmid library was prepared from the genomic DNA of S. baltica MAC1 and was screened for EPA and DHA genes by colony hybridization using a partial fragment of the S. baltica MAC1 pfaA and pfaD genes as probes. Analysis of total fatty acids isolated from transgenic E. coli positive for pfaA and pfaD genes by gas chromatography and gas chromatography‐mass spectrometry indicated recombinant production of both EPA and DHA. Analysis of the complete nucleotide sequence for the isolated gene cluster showed 16 putative open reading frames (ORFs). Among those, four ORFs showed homology with pfaA, pfaB, pfaC and pfaD genes of the EPA and/or DHA biosynthesis gene clusters; however, the protein domains of these genes were different from other EPA/DHA biosynthesis genes. Conclusions: The EPA and DHA gene cluster was cloned successfully. The transgenic E. coli strain carrying the omega‐3 gene cluster was able to produce both EPA and DHA. The isolated gene cluster contained all the genes required for the recombinant production of both EPA and DHA in E. coli. Significance and Impact of the Study: These findings have implications for any future use of the EPA and DHA gene cluster in other micro‐organisms, notably those being used for fermentation. Recombinant production of both EPA and DHA by E. coli or any other micro‐organism has great potential to add economic value to a variety of industrial and agricultural products. 相似文献
11.
The C‐terminal tails of heterotrimeric kinesin‐2 motor subunits directly bind to α‐tubulin1: Possible implications for cilia‐specific tubulin entry 下载免费PDF全文
Mukul Girotra Shalini Srivastava Anuttama Kulkarni Ayan Barbora Kratika Bobra Debnath Ghosal Pavithra Devan Amol Aher Akanksha Jain Dulal Panda Krishanu Ray 《Traffic (Copenhagen, Denmark)》2017,18(2):123-133
The assembly of microtubule‐based cytoskeleton propels the cilia and flagella growth. Previous studies have indicated that the kinesin‐2 family motors transport tubulin into the cilia through intraflagellar transport. Here, we report a direct interaction between the C‐terminal tail fragments of heterotrimeric kinesin‐2 and α‐tubulin1 isoforms in vitro. Blot overlay screen, affinity purification from tissue extracts, cosedimentation with subtilisin‐treated microtubule and LC‐ESI‐MS/MS characterization of the tail‐fragment‐associated tubulin identified an association between the tail domains and α‐tubulin1A/D isotype. The interaction was confirmed by Forster's resonance energy transfer assay in tissue‐cultured cells. The overexpression of the recombinant tails in NIH3T3 cells affected the primary cilia growth, which was rescued by coexpression of a α‐tubulin1 transgene. Furthermore, fluorescent recovery after photobleach analysis in the olfactory cilia of Drosophila indicated that tubulin is transported in a non‐particulate form requiring kinesin‐2. These results provide additional new insight into the mechanisms underlying selective tubulin isoform enrichment in the cilia. 相似文献
12.
The ribosomes stalled at the end of non‐stop mRNAs must be rescued for productive cycles of cellular protein synthesis. Escherichia coli possesses at least three independent mechanisms that resolve non‐productive translation complexes (NTCs). While tmRNA (SsrA) mediates trans‐translation to terminate translation, ArfA (YhdL) and ArfB (YaeJ) induce hydrolysis of ribosome‐tethered peptidyl‐tRNAs. ArfB is a paralogue of the release factors (RFs) and directly catalyses the peptidyl‐tRNA hydrolysis within NTCs. In contrast, the mechanism of the ArfA action had remained obscure beyond its ability to bind to the ribosome. Here, we characterized the ArfA pathway of NTC resolution in vitro and identified RF2 as a factor that cooperates with ArfA to hydrolyse peptidyl‐tRNAs located in the P‐site of the stalled ribosome. This reaction required the GGQ (Gly–Gly–Gln) hydrolysis motif, but not the SPF (Ser–Pro–Phe) codon–recognition sequence, of RF2 and was stimulated by tRNAs. From these results we suggest that ArfA binds to the vacant A‐site of the stalled ribosome with possible aid from association with a tRNA, and then recruits RF2, which hydrolyses peptidyl‐tRNA in a GGQ motif‐dependent but codon‐independent manner. In support of this model, the ArfA‐RF2 pathway did not act on the SecM‐arrested ribosome, which contains an aminoacyl‐tRNA in the A‐site. 相似文献
13.
C‐terminal domains of bacterial proteases: structure,function and the biotechnological applications 下载免费PDF全文
J. Huang C. Wu D. Liu X. Yang R. Wu J. Zhang C. Ma H. He 《Journal of applied microbiology》2017,122(1):12-22
C‐terminal domains widely exist in the C‐terminal region of multidomain proteases. As a β‐sandwich domain in multidomain protease, the C‐terminal domain plays an important role in proteolysis including regulation of the secretory process, anchoring and swelling the substrate molecule, presenting as an inhibitor for the preprotease and adapting the protein structural flexibility and stability. In this review, the diversity, structural characteristics and biological function of C‐terminal protease domains are described. Furthermore, the application prospects of C‐terminal domains, including polycystic kidney disease, prepeptidase C‐terminal and collagen‐binding domain, in the area of medicine and biological artificial materials are also discussed. 相似文献
14.
Renate Geßmann Panaiotis Benos Hans Brückner Michael Kokkinidis 《Journal of peptide science》1999,5(2):83-95
The structures of two synthetic peptides with sequences corresponding to the C‐terminal region of the naturally occurring 14‐residue peptaibol trichovirin have been determined. The crystal structures of 8‐ and 12‐residue segments are presented and are compared with the structures of the tetrapeptide and of the 9‐residue segment, which have been reported earlier. A comparison between these segments leads to the hypothesis that the three‐dimensional structure of trichovirin is to a large extent determined by the properties of a periodically repeating ‐Aib‐Pro‐ pattern in the sequence of the peptide. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
15.
16.
Loop deletions indicate regions important for FhuA transport and receptor functions in Escherichia coli 下载免费PDF全文
Precise deletions of cell surface-exposed loops of FhuA resulted in mutants of Escherichia coli with distinct phenotypes. Deletion of loop 3 or 11 inactivated ferrichrome transport activity. Deletion of loop 8 inactivated receptor activity for colicin M and the phages T1, T5, and phi80. The loop 7 deletion mutant was colicin M resistant but fully phage sensitive. The loop 4 deletion mutant was resistant to the TonB-dependent phages T1 and phi80 but fully sensitive to the TonB-independent phage T5. The phenotypes of the deletion mutants revealed important sites for the multiple FhuA transport and receptor activities. The ligand binding sites are nonidentical and are distributed among the entire exposed surface. Presumably, FhuA evolved as a ferrichrome transporter and was subsequently used as a receptor by the phages and colicin M, which selected the same as well as distinct loops as receptor sites. 相似文献
17.
18.