首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The temperature stress that pelagic fishes experience can induce physiological and behavioural changes that leave a signature in gene expression profiles. We used a functional genomics approach to identify genes that were up- or down-regulated following thermal stress in the Pacific bluefin tuna. Following the acclimation period, 113, 81 and 196 genes were found to be differentially expressed between the control (20 °C) and cold (15°) treatment groups, in ventricle, red muscle and white muscle, respectively. The genes whose expression levels were responsive to thermal acclimation varied according to muscle fibre type, perhaps reflecting the tissue-specific degrees of endothermy characteristic of this species.  相似文献   

2.
Considerable attention has been given to the potential impacts of global climate change on biodiversity. In the present study, we combine understudied themes by examining the ability of a freshwater fish (polymorphic for heat‐sensitivity) to respond to short‐term thermal stress mimicking an extreme temperature event. We simultaneously measured the effect of thermal stress on the body condition of heat‐sensitive and heat‐tolerant forms to evaluate an existing hypothesis regarding the underlying mechanism by which temperature affects the maintenance of genetic variation in this species. Surprisingly, the heat‐sensitive allelic variant increased in body condition equally as much as a heat‐tolerant variant under acute heat stress. More importantly, the heat‐sensitive variant exhibited a significant response to thermal stress, with an upward shift of greater than 2 °C in critical thermal maximum. Our findings suggest a complexity to the relationship between thermal stress and male body condition that may depend on an interaction with other factors such as resource level. Although the evolutionary fate of species with respect to climate change is typically evaluated in terms long‐term adaptive response, short‐term selection events could drastically reduce fitness and reduce evolutionary potential. Our results suggest that heat‐sensitive species may have considerably greater resilience to the short‐term, extreme perturbations to the environment that are expected under climate change. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 504–510.  相似文献   

3.
Despite much focus on species responses to environmental variation through space and time, many higher taxa and geographic areas remain poorly studied. We report the effects of temperature acclimation on thermal tolerance, desiccation rate and metabolic rate for adult Chirodica chalcoptera (Coleoptera: Chrysomelidae) collected from Protea nerifolia inflorescences in the Fynbos Biome in South Africa. After 7 days of acclimation at 12, 19 and 25 degrees C, critical thermal maxima (mean+/-s.e.: 41.8+/-0.2 degrees C in field-fresh beetles) showed less response (<1 degrees C change) to temperature acclimation than did the onset of the critical thermal minima (0.1+/-0.2, 1.0+/-0.2 and 2.3+/-0.2 degrees C, respectively). Freezing was lethal in C. chalcoptera (field-fresh SCP -14.6 degrees C) and these beetles also showed pre-freeze mortality. Survival of 2 h at -10.1 degrees C increased from 20% to 76% after a 2 h pre-exposure to -2 degrees C, indicating rapid cold hardening. Metabolic rate, measured at 25 degrees C and adjusted by ANCOVA for mass variation, did not differ between males and females (2.772+/-0.471 and 2.517+/-0.560 ml CO2 h(-1), respectively), but was higher in 25 degrees C-acclimated beetles relative to the field-fresh and 12 degrees C-acclimated beetles. Body water content and desiccation rate did not differ between males and females and did not respond significantly to acclimation. We place these data in the context of measured inflorescence and ambient temperatures, and predict that climate change for the region could have effects on this species, in turn possibly affecting local ecosystem functioning.  相似文献   

4.
While variation in metabolic rate at a single temperature can occur for a variety of reasons and the effect of temperature is well established in insects, within-generation variation of metabolic rate-temperature relationships has been relatively poorly explored. In this study, we investigate the effects of gender, age, feeding and pregnancy, as well as three acclimation temperatures (19, 24, 29 degrees C), on standard metabolic rate and its temperature-dependence within post-developmental (i.e. non-teneral) adult G. morsitans morsitans. Although most of the independent variables influenced metabolic rate at a single test temperature (P<0.001 in most cases), and cold-acclimation resulted in significant up-regulation of metabolic rate at all test temperatures relative to 24 and 29 degrees C acclimation (P<0.0001), mass-independent metabolic rate-temperature relationships were surprisingly invariant over all experimental groups (P>0.05 in all cases). Slopes of log10 metabolic rate (ml CO2h(-1)) against temperature ( degrees C) ranged from a minimum of 0.03035 (+/-S.E.=0.003) in young fasted females to a maximum of 0.03834 (+/-0.004) in mature fasted males. These findings have implications for predicting the metabolic responses of tsetse flies to short-term temperature variation and may also have applications for modelling tsetse population dynamics as a function of temperature.  相似文献   

5.
6.
7.
We used human DNA microarray to explore the differential gene expression profiling of atrial natriuretic peptide (ANP)-stimulated renal tubular epithelial kidney cells (LLC-PK1) in order to understand the biological effect of ANP on renal kidney cell's response. Gene expression profiling revealed 807 differentially expressed genes, consisting of 483 up-regulated and 324 down-regulated genes. The bioinformatics tool was used to gain a better understanding of differentially expressed genes in porcine genome homologous with human genome and to search the gene ontology and category classification, such as cellular component, molecular function and biological process. Four up-regulated genes of ATP1B1, H3F3A, ITGB1 and RHO that were typically validated by real-time quantitative PCR (RT-qPCR) analysis serve important roles in the alleviation of renal hypertrophy as well as other related effects. Therefore, the human array can be used for gene expression analysis in pig kidney cells and we believe that our findings of differentially expressed genes served as genetic markers and biological functions can lead to a better understanding of ANP action on the renal protective system and may be used for further therapeutic application.  相似文献   

8.
The effects of acclimation temperature on insect thermal performance curves are generally poorly understood but significant for understanding responses to future climate variation and the evolution of these reaction norms. Here, in Acheta domesticus, we examine the physiological effects of 7-9 days acclimation to temperatures 4 °C above and below optimum growth temperature of 29 °C (i.e. 25, 29, 33 °C) for traits of resistance to thermal extremes, temperature-dependence of locomotion performance (jumping distance and running speed) and temperature-dependence of respiratory metabolism. We also examine the effects of acclimation on mitochondrial cytochrome c oxidase (CCO) enzyme activity. Chill coma recovery time (CRRT) was significantly reduced from 38 to 13 min with acclimation at 33-25 °C, respectively. Heat knockdown resistance was less responsive than CCRT to acclimation, with no significant effects of acclimation detected for heat knockdown times (25 °C: 18.25, 29 °C: 18.07, 33 °C: 25.5 min). Thermal optima for running speed were higher (39.4-40.6 °C) than those for jumping performance (25.6-30.9 °C). Acclimation temperature affected jumping distance but not running speed (general linear model, p = 0.0075) although maximum performance (UMAX) and optimum temperature (TOPT) of the performance curves showed small or insignificant effects of acclimation temperature. However, these effects were sensitive to the method of analysis since analyses of TOPT, UMAX and the temperature breadth (TBR) derived from non-linear curve-fitting approaches produced high inter-individual variation within acclimation groups and reduced variation between acclimation groups. Standard metabolic rate (SMR) was positively related to body mass and test temperature. Acclimation temperature significantly influenced the slope of the SMR-temperature reaction norms, whereas no variation in the intercept was found. The CCO enzyme activity remained unaffected by thermal acclimation. Finally, high temperature acclimation resulted in significant increases in mortality (60-70% at 33 °C vs. 20-30% at 25 and 29 °C). These results suggest that although A. domesticus may be able to cope with low temperature extremes to some degree through phenotypic plasticity, population declines with warmer mean temperatures of only a few degrees are likely owing to the limited plasticity of their performance curves.  相似文献   

9.
10.
Summary Unexpectedly large differences in the tissue patterns of lactate dehydrogenase-C (Ldh-C) gene regulation were observed among species of fish within the family Umbridae (Salmoniformes). Normally, all the species within a family or order of advanced fishes exhibit the same, tissue-restricted pattern ofl-latate dehydrogenase C4 isozyme synthesis—either eye- or liver-restricted expression, but not both. However, within the Umbridae the more anciently derived species had a more generalized (primitive) tissue expression, whereas the more recently derived species had a more tissue-restricted expression, predominating in the eye. Given the relative divergence times among the species estimated by genetic distance (using 51 protein-coding loci), divergence from the presumed primitive expression of the Ldh-C gene appears to have been proceeding more rapidly in some species lineages than others. This narrowing of Ldh-C gene tissue regulatory specificity within the family Umbridae is similar to the general trend observed over much greater evolutionary times within the class of bony fishes. The results support the hypothesis of repeated evolutionary canalizations of Ldh-C gene regulation from the generalized tissue expression in more primitive species to a predictable tissue-restricted expression (in either eye or liver) in advanced species. Furthermore, in the Umbridae, this progressive restriction of tissue expression of isozymes has taken place during the evolution of both the Ldh-C and Ldh-B genes. These evolutionary trends in the regulation of isozyme-locus tissue expression in the bony fishes are consistent with either an intrinsically conditioned trend of change in gene regulation or with a response to natural selection.  相似文献   

11.
Natural populations of widely‐distributed animals often exhibit clinal variation in phenotypic traits or in allele frequencies of a particular gene over their geographical range. A planktotrophic intertidal snail, Littorina keenae is broadly distributed along the north‐eastern Pacific coast through a large latitudinal range (24°50′N–43°18′N). We tested for latitudinal clines in two complex phenotypic traits – thermal tolerance and body size – and one single locus trait – heat shock cognate 70 (HSC70) – in L. keenae along almost its entire geographical range. We found only weak evidence for a latitudinal cline in the thermal tolerance and no evidence for a cline in allele frequencies at HSC70. However, as predicted by Bergmann's rule, we detected a strong latitudinal cline that accounted for 60% of the variance in body size (R2 = 0.598; P < 0.001). In contrast, body size did not significantly affect thermal tolerance. HSC70 showed no genetic differentiation among the populations, supporting our previous mitochondrial gene‐based estimate of high gene flow during this snail's free‐swimming larval stage. Given that L. keenae experiences panmixia along its species range, the observed size cline may be partially or entirely caused by a phenotypically plastic response to local thermal environments rather than by genetic divergence in body size among populations in response to locally optimizing natural selection. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 494–505.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号