首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RpoN is a σ54 factor regulating essential virulence gene expression in several plant pathogenic bacteria, including Pseudomonas syringae and Pectobacterium carotovorum. In this study, we found that mutation of rpoN in the fire blight pathogen Erwinia amylovora caused a nonpathogenic phenotype. The E. amylovora rpoN Tn5 transposon mutant rpoN1250::Tn5 did not cause fire blight disease symptoms on shoots of mature apple trees. In detached immature apple fruits, the rpoN1250::Tn5 mutant failed to cause fire blight disease symptoms and grew to population levels 12 orders of magnitude lower than the wild‐type. In addition, the rpoN1250::Tn5 mutant failed to elicit a hypersensitive response when infiltrated into nonhost tobacco plant leaves, and rpoN1250::Tn5 cells failed to express HrpN protein when grown in hrp (hypersensitive response and pathogenicity)‐inducing liquid medium. A plasmid‐borne copy of the wild‐type rpoN gene complemented all the rpoN1250::Tn5 mutant phenotypes tested. The rpoN1250::Tn5 mutant was prototrophic on minimal solid and liquid media, indicating that the rpoN1250::Tn5 nonpathogenic phenotype was not caused by a defect in basic metabolism or growth. This study provides clear genetic evidence that rpoN is an essential virulence gene of E. amylovora, suggesting that rpoN has the same function in E. amylovora as in P. syringae and Pe. carotovorum.  相似文献   

2.
3.
The type III secretion system (T3SS) and exopolysaccharide (EPS) amylovoran are two essential pathogenicity factors in Erwinia amylovora, the causal agent of the serious bacterial disease fire blight. In this study, small molecules that inhibit T3SS gene expression in E. amylovora under hrp (hypersensitive response and pathogenicity)‐inducing conditions were identified and characterized using green fluorescent protein (GFP) as a reporter. These compounds belong to salicylidene acylhydrazides and also inhibit amylovoran production. Microarray analysis of E. amylovora treated with compounds 3 and 9 identified a total of 588 significantly differentially expressed genes. Among them, 95 and 78 genes were activated and suppressed by both compounds, respectively, when compared with the dimethylsulphoxide (DMSO) control. The expression of the majority of T3SS genes in E. amylovora, including hrpL and the avrRpt2 effector gene, was suppressed by both compounds. Compound 3 also suppressed the expression of amylovoran precursor and biosynthesis genes. However, both compounds induced significantly the expression of glycogen biosynthesis genes and siderophore biosynthesis, regulatory and transport genes. Furthermore, many membrane, lipoprotein and exported protein‐encoding genes were also activated by both compounds. Similar expression patterns were observed for compounds 1, 2 and 4. Using crab apple flower as a model, compound 3 was capable of reducing disease development in pistils. These results suggest a common inhibition mechanism shared by salicylidene acylhydrazides and indicate that small‐molecule inhibitors that disable T3SS function could be explored to control fire blight disease.  相似文献   

4.
The nucleotide sequence of the rpoN gene, formerly designated hno, and flanking DNA regions of the aerobic hydrogen bacterium Alcaligenes eutrophus has been determined; rpoN codes for the RNA polymerase sigma factor 54 involved in nitrogen regulation and diverse physiological functions of gram-negative bacteria. In A. eutrophus hydrogen metabolism is under control of rpoN. The Tn5-Mob insertion in a previously isolated pleiotropic mutant was mapped within the rpoN gene. The derived amino acid sequence of the A. eutrophus RpoN protein shows extensive homology to the RpoN proteins of other organisms. Sequencing revealed four other open reading frames: one upstream (ORF280) and three downstream (ORF130, ORF99 and ORF > 54) of the rpoN gene. A similar arrangement of homologous ORFs is found in the rpoN regions of other bacteria and is indicative of a conserved gene cluster.  相似文献   

5.
The alternative sigma factor, RpoN (σ54) is responsible for recruiting core RNA polymerase to the promoters of genes required for diverse physiological functions In a variety of eubacterial species. The RpoN protein In Rhodobacter capsulatus is a putative sigma factor specific for nitrogen fixation (nif) genes. Insertional mutagenesis was used to define regions important for the function of the R. capsulatus RpoN protein. Insertions of four amino acids in the predicted helix-turn-helix or in the highly conserved C-terminal eight amino acid residues (previously termed the RpoN box), and an in-frame deletion of the glutamine-rich M-terminus completely inactivated the R. capsulatus RpoN protein. Two separate insertions in the second hydrophobic heptad repeat, a putative leucine zipper, resulted in a partially functional RpoN protein. Eight other linkers in the rpoN open reading frame (ORF) resulted in a completeiy or partially functional RpoN protein. The rpoN gene in R capsulatus is downstream from the nifHDKU2 genes, in a nifU2-rpoN operon. Results of genetic experiments on the nifU2-rpoN locus show that the rpoN gene is organized in a nifU2-rpoN superoperon. A primary promoter directly upstream of the rpoN ORF is responsible for the initial expression of rpoN. Deletion analysis and insertional mutagenesis were used to define the primary promoter to 50 bp, between 37 and 87 nucleotides upstream of the predicted rpoN translational start site. This primary promoter is expressed constitutively with respect to nitrogen, and it is necessary and sufficient for growth under nitrogen-limiting conditions typically used in the laboratory. A secondary promoter upstream of nifU2 is autoactivated by RpoN and NifA to increase the expression of rpoN, which ultimately results in higher expression of RpoN dependent genes. Moreover. rpoN expression from this secondary promoter is physiologically beneficial under certain stressful conditions, such as nitrogen-limiting environments that contain high salt (>50mM NaCl) or low iron (<400nM FeS04).  相似文献   

6.
Fire blight caused by the Gram‐negative bacterium Erwinia amylovora can be controlled by antagonistic microorganisms. We characterized epiphytic bacteria isolated from healthy apple and pear trees in Australia, named Erwinia tasmaniensis, and the epiphytic bacterium Erwinia billingiae from England for physiological properties, interaction with plants and interference with growth of E. amylovora. They reduced symptom formation by the fire blight pathogen on immature pears and the colonization of apple flowers. In contrast to E. billingiae, E. tasmaniensis strains induced a hypersensitive response in tobacco leaves and synthesized levan in the presence of sucrose. With consensus primers deduced from lsc as well as hrpL, hrcC and hrcR of the hrp region of E. amylovora and of related bacteria, these genes were successfully amplified from E. tasmaniensis DNA and alignment of the encoded proteins to other Erwinia species supported a role for environmental fitness of the epiphytic bacterium. Unlike E. tasmaniensis, the epiphytic bacterium E. billingiae produced an acyl‐homoserine lactone for bacterial cell‐to‐cell communication. Their competition with the growth of E. amylovora may be involved in controlling fire blight.  相似文献   

7.
Bacteria utilize RpoN, an alternative sigma factor (σ54) to grow in diverse habitats, including nitrogen-limiting conditions. Here, we report that a rice-associated mycophagous bacterium Burkholderia gladioli strain NGJ1 encodes two paralogues of rpoN viz. rpoN1 and rpoN2. Both of them are upregulated during 24 h of mycophagous interaction with Rhizoctonia solani, a polyphagous fungal pathogen. Disruption of either one of rpoNs renders the mutant NGJ1 bacterium defective in mycophagy, whereas ectopic expression of respective rpoN genes restores mycophagy in the complementing strains. NGJ1 requires rpoN1 and rpoN2 for efficient biocontrol to prevent R. solani to establish disease in rice and tomato. Further, we have identified 17 genes having RpoN regulatory motif in NGJ1, majority of them encode potential type III secretion system (T3SS) effectors, nitrogen assimilation, and cellular transport-related functions. Several of these RpoN regulated genes as well as certain previously reported T3SS apparatus (hrcC and hrcN) and effector (Bg_9562 and endo-β-1,3-glucanase) encoding genes are upregulated in NGJ1 but not in ΔrpoN1 or ΔrpoN2 mutant bacterium, during mycophagous interaction with R. solani. This highlights that RpoN1 and RpoN2 modulate T3SS, nitrogen assimilation as well as cellular transport systems in NGJ1 and thereby promote bacterial mycophagy.  相似文献   

8.
The sigma factor σ54 (RpoN) is an important regulator of bacterial response to environmental stresses. Here, we demonstrate the roles of RpoN in Vibrio anguillarum M3 by comparative investigation of physiological phenotypes and virulence of the wild-type, an rpoN mutant, and an rpoN complemented strain. Disruption of rpoN was found to decrease biofilm formation, production of exopolysaccharides, and production of the metalloproteases EmpA and PrtV. Injection experiments in fish showed that the M3 ΔrpoN mutant was attenuated in virulence when administrated either by intramuscular injection or by immersion challenge. Slower proliferation of the mutant in fish was also observed. Complementation of the mutant strain with rpoN restored some of the phenotypes to wild-type levels. RpoN was involved in regulation of some virulence-associated genes, as shown by real-time quantitative reverse PCR analysis. These results revealed a pleiotropic regulatory role of RpoN in biofilm formation, production of proteases and exopolysaccharides, and virulence in V. anguillarum M3.  相似文献   

9.
10.
《Gene》1998,221(1):151-157
The rpoN gene, which encodes the alternative sigma factor σ54, was cloned from the budding, peptidoglycan-less bacterium Planctomyces limnophilus. P. limnophilus rpoN complemented the Ntr phenotype of a Salmonella typhimurium rpoN mutant strain. The P. limnophilus rpoN gene encoded a predicted polypeptide that was 495 residues in length and shared a significant homology with other members of the σ54 family. The protein sequence displayed all of the characteristic motifs found in members of this family, including the C-terminal helix–turn–helix motif and the well-conserved RpoN box. A potential σ54-dependent activator was also identified in P. limnophilus. These findings extend the range of phylogenetic groups within the Domain Bacteria that are known to contain σ54.  相似文献   

11.
12.
The sigma54 factor has been previously described to be involved in Listeria monocytogenes sensitivity to mesentericin Y105, a subclass IIa bacteriocin. Here, we identified the rpoN gene, encoding sigma54, of Enterococcus faecalis JH2-2 and showed that its interruption leads to E. faecalis resistance to different subclass IIa bacteriocins. Moreover, this rpoN mutant remained sensitive to nisin, a class I bacteriocin, suggesting that sigma54 is especially involved in sensitivity to subclass IIa bacteriocins. Received: 5 May 2000 / Accepted 28 June 2000  相似文献   

13.
14.
15.
Cyclic diguanylate (c‐di‐GMP) is a second messenger implicated in the regulation of various cellular properties in several bacterial species. However, its function in phytopathogenic bacteria is not yet understood. In this study we investigated a panel of GGDEF/EAL domain proteins which have the potential to regulate c‐di‐GMP levels in the phytopathogen Dickeya dadantii 3937. Two proteins, EcpB (contains GGDEF and EAL domains) and EcpC (contains an EAL domain) were shown to regulate multiple cellular behaviours and virulence gene expression. Deletion of ecpB and/or ecpC enhanced biofilm formation but repressed swimming/swarming motility. In addition, the ecpB and ecpC mutants displayed a significant reduction in pectate lyase production, a virulence factor of this bacterium. Gene expression analysis showed that deletion of ecpB and ecpC significantly reduced expression of the type III secretion system (T3SS) and its virulence effector proteins. Expression of the T3SS genes is regulated by HrpL and possibly RpoN, two alternative sigma factors. In vitro biochemical assays showed that EcpC has phosphodiesterase activity to hydrolyse c‐di‐GMP into linear pGpG. Most of the enterobacterial pathogens encode at least one T3SS, a major virulence factor which functions to subvert host defences. The current study broadens our understanding of the interplay between c‐di‐GMP, RpoN and T3SS and the potential role of c‐di‐GMP in T3SS regulation among a wide range of bacterial pathogens.  相似文献   

16.
17.
18.
19.
The EnvZ/OmpR and GrrS/GrrA systems, two widely distributed two-component systems in gamma-Proteobacteria, negatively control amylovoran biosynthesis in Erwinia amylovora, and the two systems regulate motility in an opposing manner. In this study, we examined the interplay of EnvZ/OmpR and GrrS/GrrA systems in controlling various virulence traits in E. amylovora. Results showed that amylovoran production was significantly higher when both systems were inactivated, indicating that the two systems act as negative regulators and their combined effect on amylovoran production appears to be enhanced. In contrast, reduced motility was observed when both systems were deleted as compared to that of grrA/grrS mutants and WT strain, indicating that the two systems antagonistically regulate motility in E. amylovora. In addition, glycogen accumulation was much higher in envZ/ompR and two triple mutants than that of grrS/grrA mutants and WT strain, suggesting that EnvZ/OmpR plays a dominant role in regulating glycogen accumulation, whereas levan production was significantly lower in the grrS/grrA and two triple mutants as compared with that of WT and envZ/ompR mutants, indicating that GrrS/GrrA system dominantly controls levan production. Furthermore, both systems negatively regulated expression of three type III secretion (T3SS) genes and their combined negative effect on hrp-T3SS gene expression increased when both systems were deleted. These results demonstrated that EnvZ/OmpR and GrrS/GrrA systems co-regulate various virulence factors in E. amylovora by still unknown mechanisms or through different target genes, sRNAs, or proteins, indicating that a complex regulatory network may be involved, which needs to be further explored.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号