首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Schmallenberg virus (SBV), an arboviral pathogen of ruminants, emerged in northern Europe during 2011 and has subsequently spread across a vast geographic area. While Culicoides biting midges (Diptera: Ceratopogonidae) have been identified as a biological transmission agent of SBV, the role of mosquitoes (Diptera: Culicidae) as potential vectors has not been defined beyond small-scale field collections in affected areas. Culex pipiens L. are one of the most widespread mosquitoes in northern Europe; they are present on farms across the region and have previously been implicated as vectors of several other arboviruses. We assessed the ability of three colony lines of Cx. pipiens, originating from geographically diverse field populations, to become fully infected by SBV using semi-quantitative real-time RT-PCR (sqPCR).

Findings

Two colony lines of Cx. pipiens were created in the UK (‘Brookwood’ and ‘Caldbeck’) from field collections of larvae and pupae and characterised using genetic markers. A third strain of Cx. pipiens from CVI Wageningen, The Netherlands, was also screened during experiments. Intrathoracic inoculation of the Brookwood line resulted in infections after 14 days that were characterised by high levels of RNA throughout individuals, but which demonstrated indirect evidence of salivary gland barriers. Feeding of 322 individuals across the three colony lines on a membrane based infection system resulted in no evidence of full dissemination of SBV, although infections did occur in a small proportion of Cx. pipiens from each line.

Conclusions/Significance

This study established two novel lines of Cx. pipiens mosquitoes of UK origin in the laboratory and subsequently tested their competence for SBV. Schmallenberg virus replication and dissemination was restricted, demonstrating that Cx. pipiens is unlikely to be an epidemiologically important vector of the virus in northern Europe.  相似文献   

2.

Background

In late 2011, a new Orthobunyavirus of the Simbu serogroup named Schmallenberg virus (SBV) emerged in continental Europe. The virus is transmitted by hematophagous arthropods, with the Culicoides species as, so far known, main vectors. Infection with the virus can cause clinical signs in adult ruminants including diarrhea, fever and reduced milk production. Transplacental infection of the developing fetus can lead to malformations of varying severity. To assess seroprevalence of SBV in Sweden an indirect enzyme-linked immunosorbent assay (ELISA) was established in connection with the surveys. Here, we describe the development and evaluation of the indirect ELISA, based on whole virus as the coating antigen and a monoclonal antibody for the detection of antibodies to SBV in ruminant sera. The evaluation includes comparison between the in-house ELISA, virus neutralization test and an indirect commercial ELISA.

Results

The optimal working dilutions of antigens and conjugate were estimated with checkerboard titrations. Comparative studies, including ROC analyses, were used for the selection of an optimal cut-off (S/P value?=?sample value as percentage of positive control value). With an estimated S/P value of 15% the whole virus ELISA showed a specificity of 100% and a sensitivity of 99.19% compared to virus neutralization test (VNT) and with a good consistency as shown in reproducibility and variability experiments. Furthermore, the comparison of our whole virus indirect ELISA to an indirect ELISA with a SBV nucleoprotein antigen, demonstrated a higher sensitivity of our test.

Conclusion

The indirect whole virus ELISA described in this paper is a readily available test for serological analysis of SBV antibodies. Since this in-house ELISA demonstrates a specificity and sensitivity comparable to virus neutralization test and also shows a higher sensitivity compared to commercially available indirect ELISA, it is a useful alternative for surveillance and screening purposes of SBV.
  相似文献   

3.
A newly developed Enzym Like Immuno Sorbant Assay (ELISA) based on the recombinant nucleocapsid protein (N) of Schmallenberg virus (SBV) was evaluated and validated for the detection of SBV-specific IgG antibodies in ruminant sera by three European Reference Laboratories. Validation data sets derived from sheep, goat and bovine sera collected in France and Germany (n = 1515) in 2011 and 2012 were categorized according to the results of a virus neutralization test (VNT) or an indirect immuno-flurorescence assay (IFA). The specificity was evaluated with 1364 sera from sheep, goat and bovine collected in France and Belgium before 2009. Overall agreement between VNT and ELISA was 98.9% and 98.3% between VNT and IFA, indicating a very good concordance between the different techniques. Although cross-reactions with other Orthobunyavirus from the Simbu serogroup viruses might occur, it is a highly sensitive, specific and robust ELISA-test validated to detect anti-SBV antibodies. This test can be applied for SBV sero-diagnostics and disease-surveillance studies in ruminant species in Europe.  相似文献   

4.
Mosquito vectors play a crucial role in the distribution of avian Plasmodium parasites worldwide. At northern latitudes, where climate warming is most pronounced, there are questions about possible changes in the abundance and distribution of Plasmodium parasites, their vectors, and their impacts to avian hosts. To better understand the transmission of Plasmodium among local birds and to gather baseline data on potential vectors, we sampled a total of 3,909 mosquitoes from three locations in south‐central Alaska during the summer of 2016. We screened mosquitoes for the presence of Plasmodium parasites using molecular techniques and estimated Plasmodium infection rates per 1,000 mosquitoes using maximum likelihood methods. We found low estimated infection rates across all mosquitoes (1.28 per 1,000), with significantly higher rates in Culiseta mosquitoes (7.91 per 1,000) than in Aedes mosquitoes (0.57 per 1,000). We detected Plasmodium in a single head/thorax sample of Culiseta, indicating potential for transmission of these parasites by mosquitoes of this genus. Plasmodium parasite DNA isolated from mosquitoes showed a 100% identity match to the BT7 Plasmodium lineage that has been detected in numerous avian species worldwide. Additionally, microscopic analysis of blood smears collected from black‐capped chickadees (Poecile atricapillus) at the same locations revealed infection by parasites preliminarily identified as Plasmodium circumflexum. Results from our study provide the first information on Plasmodium infection rates in Alaskan mosquitoes and evidence that Culiseta species may play a role in the transmission and maintenance of Plasmodium parasites in this region.  相似文献   

5.
K. S. Kim  Y. Tsuda 《Molecular ecology》2012,21(21):5374-5385
The ecology and geographical distribution of disease vectors are major determinants of spatial and temporal variations in the transmission dynamics of vector‐borne pathogens. However, there are limited studies on the ecology of vectors that contribute to the natural transmission of most vector‐borne pathogens. Avian Plasmodium parasites are multihost mosquito‐borne pathogens transmitted by multiple mosquito species, which might regulate the diversity and persistence of these parasites. From 2007 to 2010, we conducted entomological surveys at Sakata wetland in central Japan, to investigate temporal variation in mosquito occurrence and prevalence of avian Plasmodium lineages in the mosquito populations. A polymerase chain reaction (PCR)‐based method was used to detect Plasmodium parasites and identify the blood sources of mosquitoes. Culex inatomii and Cpipiens pallens represented 60.0% and 34.8% of 11 mosquito species collected, respectively. Our results showed that the two dominant mosquito species most likely serve as principal vectors of avian Plasmodium parasites during June, which coincides with the breeding season of bird species nesting in the wetland reed beds. Fourteen animal species were identified as blood sources of mosquitoes, with the oriental reed warbler (Acrocephalus orientalis) being the commonest blood source. Although there was significant temporal variation in the occurrence of mosquitoes and prevalence of Plasmodium lineages in the mosquitoes, the dominant Plasmodium lineages shared by the two dominant mosquito species were consistently found at the same time during transmission seasons. Because vector competence cannot be confirmed solely by PCR approaches, experimental demonstration is required to provide definitive evidence of transmission suggested in this study.  相似文献   

6.
In Europe, West Nile virus (WNV) outbreaks have been limited to southern and central European countries. However, competent mosquito vectors and susceptible bird hosts are present in northern Europe. Differences in temperature and vector competence of mosquito populations may explain the absence of WNV outbreaks in northern Europe. The aim of the present study was to directly compare vector competence of northern and southern European Culex pipiens (Cx. p.) pipiens mosquitoes for WNV across a gradient of temperatures. WNV infection and transmission rates were determined for two Cx. p. pipiens populations originating from The Netherlands and Italy, respectively. Mosquitoes were orally exposed by providing an infectious bloodmeal, or by injecting WNV (lineage 2) in the thorax, followed by 14‐day incubation at 18, 23, or 28 °C. No differences in infection or transmission rates were found between the Cx. p. pipiens populations with both infection methods, but WNV transmission rates were significantly higher at temperatures above 18 °C. The absence of WNV outbreaks in northern Europe cannot be explained by differences in vector competence between Cx. p. pipiens populations originating from northern and southern Europe. This study suggests that low temperature is a key limiting factor for WNV transmission.  相似文献   

7.
Culex pipiens densovirus (CpDV), a single stranded DNA virus, has been isolated from Culex pipiens mosquitoes but differs from other mosquito densoviruses in terms of genome structure and sequence identity. Its transmission from host to host, the nature of its interactions with both its host and host's endosymbiotic bacteria Wolbachia are not known. Here, we report the presence of CpDV in the ovaries and eggs of Cx. pipiens mosquitoes in close encounters with Wolbachia. In the ovaries, CpDV amount significantly differed between mosquito lines harbouring different strains of Wolbachia and these differences were not linked to variations in Wolbachia densities. CpDV was vertically transmitted in all laboratory lines to 17%–20% of the offspring. For some females, however, the vertical transmission reached 90%. Antibiotic treatment that cured the host from Wolbachia significantly decreased both CpDV quantity and vertical transmission suggesting an impact of host microbiota, including Wolbachia, on CpDV transmission. Overall our results show that CpDV is transmitted vertically via transovarian path along with Wolbachia with which it shares the same cells. Our results are primordial to understand the dynamics of densovirus infection, their persistence and spread in populations considering their potential use in the regulation of mosquito vector populations.  相似文献   

8.

Background

West Nile virus (WNV) is a highly pathogenic flavivirus transmitted by Culex spp. mosquitoes. In North America (NA), lineage 1 WNV caused the largest outbreak of neuroinvasive disease to date, while a novel pathogenic lineage 2 strain circulates in southern Europe. To estimate WNV lineage 2 epidemic potential it is paramount to know if mosquitoes from currently WNV-free areas can support further spread of this epidemic.

Methodology/Principal Findings

We assessed WNV vector competence of Culex pipiens mosquitoes originating from north-western Europe (NWE) in direct comparison with those from NA. We exposed mosquitoes to infectious blood meals of lineage 1 or 2 WNV and determined the infection and transmission rates. We explored reasons for vector competence differences by comparing intrathoracic injection versus blood meal infection, and we investigated the influence of temperature. We found that NWE mosquitoes are highly competent for both WNV lineages, with transmission rates up to 25%. Compared to NA mosquitoes, transmission rates for lineage 2 WNV were significantly elevated in NWE mosquitoes due to better virus dissemination from the midgut and a shorter extrinsic incubation time. WNV infection rates further increased with temperature increase.

Conclusions/Significance

Our study provides experimental evidence to indicate markedly different risk levels between both continents for lineage 2 WNV transmission and suggests a degree of genotype-genotype specificity in the interaction between virus and vector. Our experiments with varying temperatures explain the current localized WNV activity in southern Europe, yet imply further epidemic spread throughout NWE during periods with favourable climatic conditions. This emphasizes the need for intensified surveillance of virus activity in current WNV disease-free regions and warrants increased awareness in clinics throughout Europe.  相似文献   

9.
Vector-borne diseases often originate from wildlife and can spill over into the human population. One of the most important determinants of vector-borne disease transmission is the host preference of mosquitoes. Mosquitoes with a specialised host preference are guided by body odours to find their hosts in addition to carbon dioxide. Little is known about the role of mosquito host preference in the spillover of pathogenic agents from humans towards animals and vice versa. In the Republic of Congo, the attraction of mosquitoes to primate host odours was determined, as well as their possible role as malaria vectors, using odour-baited traps mimicking the potential hosts of mosquitoes. Most of the mosquito species caught showed a generalistic host preference. Anopheles obscurus was the most abundant Anopheles mosquito, with a generalistic host preference observed from the olfactory response and the detection of various Plasmodium parasites. Interestingly, Culex decens showed a much higher attraction towards chimpanzee odours than to human or cow odours. Human Plasmodium parasites were observed in both human and chimpanzee blood, although not in the Anopheles mosquitoes that were collected. Understanding the role of mosquito host preference for cross-species parasite transmission provides information that will help to determine the risk of spillover of vector-borne diseases.  相似文献   

10.
The avian zoonotic agent for West Nile virus (WNV) can cause neuroinvasive disease in horses and humans and is expanding its range in Europe. Analyses of the risk for transmission to these hosts in non‐endemic areas are necessary. Host preferences of mosquitoes (Diptera: Culicidae), the main vectors of WNV, were determined in Switzerland using animal‐baited trap (horse, chickens) experiments at a natural and a periurban site. This was undertaken on four occasions during May–September 2014. In addition, the hosts of 505 blood‐fed mosquitoes collected in a zoo and in the field were determined. Mosquito data obtained in the animal bait experiments were corrected for host weight and body surface area and by Kleiber's scaling factor. Collections of 11–14 different mosquito species were achieved with these approaches. Statistically significant host preferences were identified in three species in both approaches. The other species showed opportunistic feeding behaviours to varying extents. Specifically, the invasive species Hulecoeteomyia japonica (= Aedes japonicus) was identified for the first time as feeding on avians in nature. Abundance data, spatiotemporal activity and laboratory vector competence for WNV suggested that, in addition to the main WNV vector Culex pipiens, H. japonica and Aedimorphus vexans (= Aedes vexans) are the most likely candidate bridge vectors for WNV transmission in Switzerland.  相似文献   

11.
Schmallenberg virus (SBV) is an emerging Orthobunyavirus, first described in 2011 in cattle in Germany and subsequently spread throughout Europe, affecting mainly ruminant livestock through the induction of foetal malformations. To gain a better understanding of the spectrum of susceptible species and to assess the value of current SBV serological assays, screening of serum samples from exotic artiodactyls and perissodactyls collected at the Living Collections from the Zoological Society of London (Whipsnade and London Zoos) and Chester Zoo was carried out. There was compelling evidence of SBV infection in both zoological collections. The competitive ELISA has proved to be applicable for the detection of SBV in exotic Bovidae, Cervidae, Suidae, Giraffidae and most notably in endangered Asian elephants (Elephas maximus), but unreliable for the screening of Camelidae, for which the plaque reduction neutralisation test was considered the assay of choice.  相似文献   

12.

Background

The recent unprecedented emergence of arboviruses transmitted by Culicoides biting midges in northern Europe has necessitated the development of techniques to differentiate competent vector species. At present these techniques are entirely reliant upon interpretation of semi-quantitative RT-PCR (sqPCR) data in the form of Cq values used to infer the presence of viral RNA in samples.

Methodology/Principal Findings

This study investigates the advantages and limitations of sqPCR in this role by comparing infection and dissemination rates of Schmallenberg virus (SBV) in two colony lines of Culicoides. Through the use of these behaviorally malleable lines we provide tools for demarcating arbovirus infection and dissemination rates in Culicoides which to date have prevented clear implication of primary vector species in northern Europe. The study demonstrates biological transmission of SBV in an arthropod vector, supporting the conclusions from field-caught Culicoides and provides a general framework for future assessment of vector competence of Culicoides for arboviruses using sqPCR.

Conclusions/Significance

When adopting novel diagnostic technologies, correctly implicating vectors of arboviral pathogens requires a coherent laboratory framework to fully understand the implications of results produced in the field. This study illustrates these difficulties and provides a full examination of sqPCR in this role for the Culicoides-arbovirus system.  相似文献   

13.
Mosquito biting frequency and meal size are considered to be important parameters in the epidemiology of insect‐vectored diseases such as malaria. Because both parameters are likely to depend on the size and energetic state of adult mosquitoes, the present study investigates the effects of body size and energy state on attack behaviours in the malaria mosquito, Anopheles gambiae. Attack rates are measured as well as total time spent before giving up for individual females when provided with an unobtainable human hand (i.e. mosquitoes are dislodged every time that they land). The factorial design considers two body sizes, small and large, as well as three sugar deprivation states, 0, 1 and 2 days. The results reveal a positive effect of size on attack rate and a nonlinear effect of energy state, where mosquitoes of intermediate energy state show lower attack rates than either 2‐day food‐deprived or nondeprived mosquitoes. Moreover, attack rate is negatively associated with persistence time in nondeprived and 2‐day food‐deprived Anopheles but is unrelated to persistence time in 1‐day food‐deprived mosquitoes, Interestingly, although persistence times are generally inversely related to attack rates, they are not significantly influenced by either energetic or size states.  相似文献   

14.
Mosquito mortality and the evolution of malaria virulence   总被引:1,自引:0,他引:1  
Abstract Several laboratory studies of malaria parasites (Plasmodium sp.) and some field observations suggest that parasite virulence, defined as the harm a parasite causes to its vertebrate host, is positively correlated with transmission. Given this advantage, what limits the continual evolution of higher parasite virulence? One possibility is that while more virulent strains are more infectious, they are also more lethal to mosquitoes. In this study, we tested whether the virulence of the rodent malaria parasite P. chabaudi in the laboratory mouse was correlated with the fitness of mosquitoes it subsequently infected. Mice were infected with one of seven genetically distinct clones of P. chabaudi that differ in virulence. Weight loss and anemia in infected mice were monitored for 16–17 days before Anopheles stephensi mosquitoes were allowed to take a blood meal from them. Infection virulence in mice was positively correlated with transmission to mosquitoes (infection rate) and weakly associated with parasite burden (number of oocysts). Mosquito survival fell with increasing oocyst burden, but there was no overall statistically significant relationship between virulence in mice and mosquito mortality. Thus, there was no evidence that more virulent strains are more lethal to mosquitoes. Both vector survival and fecundity depended on parasite clone, and contrary to expectations, mosquitoes fed on infections more virulent to mice were more fecund. The strong parasite genetic effects associated with both fecundity and survival suggests that vector fitness could be an important selective agent shaping malaria population genetics and the evolution of phenotypes such as virulence in the vector.  相似文献   

15.
West Nile virus (WNV) is a zoonotic arboviral pathogen transmitted by mosquitoes in a cycle that involves wild birds as reservoir hosts. The virus is responsible for outbreaks of viral encephalitis in humans and horses. In Europe, Culex pipiens (Diptera: Culicidae) is considered to be the main vector of WNV, but other species such as Stegomyia albopicta (=Aedes albopictus) (Diptera: Culicidae) may also act as competent vectors of this virus. Since 2008 human cases of WNV disease have been reported in northeast Italy. In 2011, new areas of southern Italy became involved and a first outbreak of WNV lineage 1 occurred on the island of Sardinia. On the assumption that a potential involvement of St. albopicta in WNV transmission cannot be excluded, and in order to evaluate the competence of this species for the virus, an experimental infection of an St. albopicta laboratory colony, established from mosquitoes collected in Sardinia, was carried out. The results were compared with those obtained in a colony of the main vector Cx. pipiens. The study showed St. albopicta collected on Sardinia to be susceptible to WNV infection, which suggests this Italian mosquito species is able to act as a possible secondary vector, particularly in urban areas where the species reaches high levels of seasonal abundance.  相似文献   

16.
Male and nulliparous female mosquitoes were surveyed for evidence of vertical WNV infection in East Baton Rouge Parish, Louisiana. Adult male mosquitoes collected by trapping and aspiration, and adult male and nulliparous female mosquitoes reared from field‐collected larvae were tested. Adult male Culex spp., female Aedes albopictus (Skuse), and female Culex quinquifasciatus Say mosquitoes that were collected as larvae were test‐positive for WNV RNA. Infectious WNV was detected using virus isolation in field‐collected male Aedes triseriatus Say and Culex salinarius Coquillett; these data represent the first field evidence of vertical transmission of WNV in Ae. triseriatus and Cx. salinarius.  相似文献   

17.
For vectorborne infections, host selection by bloodfeeding arthropods dictates the interaction between host and pathogen. Because Culex mosquitoes that transmit West Nile virus (WNV) feed both on mammalian and avian hosts with varying competence, understanding the bloodfeeding patterns of these mosquitoes is important for understanding the transmission dynamics of WNV. Herein, we describe a new microsphere‐based assay using Luminex xMAP® technology to rapidly identify 15 common hosts of Culex mosquitoes at our California study sites. The assay was verified with over 100 known vertebrate species samples and was used in conjunction with DNA sequencing to identify over 125 avian and mammalian host species from unknown Culex bloodmeals, more quickly and with less expense than sequencing alone. In addition, with multiplexed labelled probes, this microsphere array identified mixed bloodmeals that were difficult to discern with traditional sequencing. The microsphere set was easily expanded or reduced according to host range in a specific area, and this assay has made it possible to rapidly screen thousands of Culex spp. bloodmeals to extend our understanding of WNV transmission patterns.  相似文献   

18.
Avian malaria has historically played an important role as a model in the study of human malaria, being a stimulus for the development of medical parasitology. Avian malaria has recently come back to the research scene as a unique animal model to understand the ecology and evolution of the disease, both in the field and in the laboratory. Avian malaria is highly prevalent in birds and mosquitoes around the world and is amenable to laboratory experimentation at each stage of the parasite''s life cycle. Here, we take stock of 5 years of experimental laboratory research carried out using Plasmodium relictum SGS1, the most prevalent avian malaria lineage in Europe, and its natural vector, the mosquito Culex pipiens. For this purpose, we compile and analyse data obtained in our laboratory in 14 different experiments. We provide statistical relationships between different infection-related parameters, including parasitaemia, gametocytaemia, host morbidity (anaemia) and transmission rates to mosquitoes. This analysis provides a wide-ranging picture of the within-host and between-host parameters that may bear on malaria transmission and epidemiology.  相似文献   

19.
West Nile virus (WNV) is now endemic in California, with annual transmission documented by the statewide surveillance system. Although much is known about the horizontal avian‐mosquito transmission cycle, less is known about vertical transmission under field conditions, which may supplement virus amplification during summer and provide a mechanism to infect overwintering female mosquitoes during fall. The current study identified clusters of WNV‐infected mosquitoes in Sacramento and Yolo Counties, CA, during late summer 2011 and tested field‐captured ovipositing female mosquitoes and their progeny for WNV RNA to estimate the frequency of vertical transmission. Space‐time clustering of WNV‐positive Culex pipiens complex pools was detected in the northern Elk Grove area of Sacramento County between July 18 and September 18, 2011 (5.22 km radius; p<0.001 and RR=7.80). Vertical transmission by WNV‐infected females to egg rafts was 50% and to larvae was 40%. The estimated minimal filial infection rate from WNV‐positive, ovipositing females was 2.0 infected females/1,000. The potential contribution of vertical transmission to WNV maintenance and amplification are discussed.  相似文献   

20.
Gametocytes are the sole Plasmodium parasite stages that infect mosquitoes; therefore development of functional gametes is required for malaria transmission. Flagellum assembly of the Plasmodium male gamete differs from that of most other eukaryotes in that it is intracytoplasmic but retains a key conserved feature: axonemes assemble from basal bodies. The centriole/basal body protein SAS‐6 normally regulates assembly and duplication of these organelles and its depletion causes severe flagellar/ciliary abnormalities in a diverse array of eukaryotes. Since basal body and flagellum assembly are intimately coupled to male gamete development in Plasmodium, we hypothesized that SAS‐6 disruption may cause gametogenesis defects and perturb transmission. We show that Plasmodium berghei sas6 knockouts display severely abnormal male gametogenesis presenting reduced basal body numbers, axonemal assembly defects and abnormal nuclear allocation. The defects in gametogenesis reduce fertilization and render Pbsas6 knockouts less infectious to mosquitoes. Additionally, we show that lack of Pbsas6 blocks transmission from mosquito to vertebrate host, revealing an additional yet undefined role in ookinete to sporulating oocysts transition. These findings underscore the vulnerability of the basal body/SAS‐6 to malaria transmission blocking interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号