首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biosynthesis of fatty acids is one of the most fundamental biochemical pathways in nature. In bacteria and plant chloroplasts, the committed and rate‐limiting step in fatty acid biosynthesis is catalyzed by a multi‐subunit form of the acetyl‐CoA carboxylase enzyme (ACC). This enzyme carboxylates acetyl‐CoA to produce malonyl‐CoA, which in turn acts as the building block for fatty acid elongation. In Escherichia coli, ACC is comprised of three functional modules: the biotin carboxylase (BC), the biotin carboxyl carrier protein (BCCP) and the carboxyl transferase (CT). Previous data showed that both bacterial and plant BCCP interact with signal transduction proteins belonging to the PII family. Here we show that the GlnB paralogues of the PII proteins from E. coli and Azospirillum brasiliense, but not the GlnK paralogues, can specifically form a ternary complex with the BC‐BCCP components of ACC. This interaction results in ACC inhibition by decreasing the enzyme turnover number. Both the BC‐BCCP‐GlnB interaction and ACC inhibition were relieved by 2‐oxoglutarate and by GlnB uridylylation. We propose that the GlnB protein acts as a 2‐oxoglutarate‐sensitive dissociable regulatory subunit of ACC in Bacteria.  相似文献   

2.
Phosphoenolpyruvate carboxylase (PEPC) is the second major carbon-fixing enzyme in photoautotrophic organisms. PEPC is required for the synthesis of amino acids of the glutamate and aspartate family by replenishing the TCA cycle. Furthermore, in cyanobacteria, PEPC, together with malate dehydrogenase and malic enzyme, forms a metabolic shunt for the synthesis of pyruvate from PEP. During this process, CO2 is first fixed and later released again. Due to its central metabolic position, it is crucial to fully understand the regulation of PEPC. Here, we identify PEPC from the cyanobacterium Synechocystis sp. PCC 6803 (PEPC) as a novel interaction partner for the global signal transduction protein PII. In addition to an extensive characterization of PEPC, we demonstrate specific PII–PEPC complex formation and its enzymatic consequences. PEPC activity is tuned by the metabolite-sensing properties of PII: Whereas in the absence of PII, PEPC is subjected to ATP inhibition, it is activated beyond its basal activity in the presence of PII. Furthermore, PII–PEPC complex formation is inhibited by ADP and PEPC activation by PII-ATP is mitigated in the presence of 2-OG, linking PEPC regulation to the cell's global carbon/nitrogen status. Finally, physiological relevance of the in vitro measurements was proven by metabolomic analyses of Synechocystis wild-type and PII-deficient cells.  相似文献   

3.
The widespread PII signal transduction proteins are known for integrating signals of nitrogen and energy supply and regulating cellular behavior by interacting with a multitude of target proteins. The PII protein of the cyanobacterium Synechococcus elongatus forms complexes with the controlling enzyme of arginine synthesis, N-acetyl-L-glutamate kinase (NAGK) in a 2-oxoglutarate- and ATP/ADP-dependent manner. Fusing NAGK and PII proteins to either CFP or YFP yielded a FRET sensor that specifically responded to 2-oxoglutarate. The impact of the fluorescent tags on PII and NAGK was evaluated by enzyme assays, surface plasmon resonance spectroscopy and isothermal calorimetric experiments. The developed FRET sensor provides real-time data on PII - NAGK interaction and its modulation by the effector molecules ATP, ADP and 2-oxoglutarate in vitro. Additionally to its utility to monitor 2-oxoglutarate levels, the FRET assay provided novel insights into PII - NAGK complex formation: (i) It revealed the formation of an encounter-complex between PII and NAGK, which holds the proteins in proximity even in the presence of inhibitors of complex formation; (ii) It revealed that the PII T-loop residue Ser49 is neither essential for complex formation with NAGK nor for activation of the enzyme but necessary to form a stable complex and efficiently relieve NAGK from arginine inhibition; (iii) It showed that arginine stabilizes the NAGK hexamer and stimulates PII - NAGK interaction.  相似文献   

4.
PII protein is one of the largest families of signal transduction proteins in archaea, bacteria, and plants, controlling key processes of nitrogen assimilation. An intriguing characteristic for many PII proteins is that the three ligand binding sites exhibit anticooperative allosteric regulation. In this work, PII protein from Synechococcus elongatus, a model for cyanobacteria and plant PII proteins, is utilized to reveal the anticooperative mechanism upon binding of 2‐oxoglutarate (2‐OG). To this end, a method is proposed to define the binding pocket size by identifying residues that contribute greatly to the binding of 2‐OG. It is found that the anticooperativity is realized through population shift of the binding pocket size in an asymmetric manner. Furthermore, a new algorithm based on the dynamic correlation analysis is developed and utilized to discover residues that mediate the anticooperative process with high probability. It is surprising to find that the T‐loop, which is believed to be responsible for mediating the binding of PII with its target proteins, also takes part in the intersubunit signal transduction process. Experimental results of PII variants further confirmed the influence of T‐loop on the anticooperative regulation, especially on binding of the third 2‐OG. These discoveries extend our understanding of the PII T‐loop from being essential in versatile binding of target protein to signal‐mediating in the anticooperative allosteric regulation. Proteins 2014; 82:1048–1059. © 2013 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

5.
6.
PII signaling proteins comprise one of the most versatile signaling devices in nature and have a highly conserved structure. In cyanobacteria, PipX and N-acetyl-l-glutamate kinase are receptors of PII signaling, and these interactions are modulated by ADP, ATP, and 2-oxoglutarate. These effector molecules bind interdependently to three anti-cooperative binding sites on the trimeric PII protein and thereby affect its structure. Here we used the PII protein from Synechococcus elongatus PCC 7942 to reveal the structural basis of anti-cooperative ADP binding. Furthermore, we clarified the mutual influence of PII-receptor interaction and sensing of the ATP/ADP ratio. The crystal structures of two forms of trimeric PII, one with one ADP bound and the other with all three ADP-binding sites occupied, revealed significant differences in the ADP binding mode: at one site (S1) ADP is tightly bound through side-chain and main-chain interactions, whereas at the other two sites (S2 and S3) the ADP molecules are only bound by main-chain interactions. In the presence of the PII-receptor PipX, the affinity of ADP to the first binding site S1 strongly increases, whereas the affinity for ATP decreases due to PipX favoring the S1 conformation of PII-ADP. In consequence, the PII-PipX interaction is highly sensitive to subtle fluctuations in the ATP/ADP ratio. By contrast, the PII-N-acetyl-l-glutamate kinase interaction, which is negatively affected by ADP, is insensitive to these fluctuations. Modulation of the metabolite-sensing properties of PII by its receptors allows PII to differentially perceive signals in a target-specific manner and to perform multitasking signal transduction.  相似文献   

7.
The aim of this research is to explore the effect of miR‐200b‐3p targeting DNMT3A on the proliferation and apoptosis of osteoarthritis (OA) cartilage cells. Quantitative RT‐PCR was performed to analyse the expression of miR‐200b‐3p, DNMT3A, MMP1, MMP3, MMP9, MMP13 and COL II in normal and OA cartilage tissues. The dual‐luciferase reporter assay and Western blot assay were conducted to confirm the targeting relationship between miR‐200b‐3p and DNMT3A. We also constructed eukaryotic expression vector to overexpress miR‐200b‐3p and DNMT3A. We detected the expression level of MMPs and COL II in stable transfected cartilage cells using RT‐PCR and Western blot. Cell proliferation and apoptosis were evaluated using the MTS, pellet culture and Hoechst 33342 staining method. Finally, we explored the effect of miR‐200b‐3p targeting DNMT3A on the proliferation and apoptosis of OA cartilage cells. The results of RT‐PCR indicated that both miR‐200b‐3p and COL II were down‐regulated in OA cartilage tissues, while the expression of DNMT3A and MMPs was up‐regulated in OA cartilage tissues. The expressions of DNMT3A, MMPs and COL II detected by Western blot showed the same trend of the results of RT‐PCR. The dual‐luciferase reporter assay and Western blot assay confirmed the targeting relationship between miR‐200b‐3p and DNMT3A. In overexpressed miR‐200b‐3p cartilage cells, DNMT3A and MMPs were significantly down‐regulated, COL II was significantly up‐regulated, cell viability was enhanced and apoptosis rate was decreased (P < 0.05). In overexpressed DNM3T cartilage cells, MMPs were significantly up‐regulated, COL II was significantly down‐regulated, cell viability was weakened and apoptosis rate was increased (P < 0.05). MiR‐200b‐3p inhibited the secretion of MMPs, promoted the synthesis of COL II and enhanced the growth and proliferation of OA cartilage cells through inhibiting the expression of DNMT3A.  相似文献   

8.
9.
The growth or virulence of Mycobacterium tuberculosis bacilli depends on homologous type VII secretion systems, ESX‐1, ESX‐3 and ESX‐5, which export a number of protein effectors across membranes to the bacterial surface and environment. PE and PPE proteins represent two large families of highly polymorphic proteins that are secreted by these ESX systems. Recently, it was shown that these proteins require system‐specific cytoplasmic chaperones for secretion. Here, we report the crystal structure of M. tuberculosis ESX‐5‐secreted PE25–PPE41 heterodimer in complex with the cytoplasmic chaperone EspG5. EspG5 represents a novel fold that is unrelated to previously characterized secretion chaperones. Functional analysis of the EspG5‐binding region uncovered a hydrophobic patch on PPE41 that promotes dimer aggregation, and the chaperone effectively abolishes this process. We show that PPE41 contains a characteristic chaperone‐binding sequence, the hh motif, which is highly conserved among ESX‐1‐, ESX‐3‐ and ESX‐5‐specific PPE proteins. Disrupting the interaction between EspG5 and three different PPE target proteins by introducing different point mutations generally affected protein secretion. We further demonstrate that the EspG5 chaperone plays an important role in the ESX secretion mechanism by keeping aggregation‐prone PE–PPE proteins in their soluble state.  相似文献   

10.
The strawberry fruit allergens Fra a 1.01E, Fra a 1.02 and Fra a 1.03 belong to the group of pathogenesis‐related 10 (PR‐10) proteins and are homologs of the major birch pollen Bet v 1 and apple allergen Mal d 1. Bet v 1 related proteins are the most extensively studied allergens but their physiological function in planta remains elusive. Since Mal d 1‐Associated Protein has been previously identified as interaction partner of Mal d 1 we studied the binding of the orthologous Fra a 1‐Associated Protein (FaAP) to Fra a 1.01E/1.02/1.03. As the C‐terminal sequence of FaAP showed strong auto‐activation activity in yeast 2‐hybrid analysis a novel time resolved DNA‐switching system was successfully applied. Fra a 1.01E, Fra a 1.02, and Fra a 1.03 bind to FaAP with KD of 4.5 ± 1.1, 15 ± 3, and 11 ± 2 nM, respectively. Fra a 1.01E forms a dimer, whereas Fra a 1.02 and Fra a 1.03 bind as monomer. The results imply that PR‐10 proteins might be integrated into a protein‐interaction network and FaAP binding appears to be essential for the physiological function of the Fra a 1 proteins.  相似文献   

11.
Saha I  Shamala N 《Biopolymers》2012,97(1):54-64
The covalent linkage between the side‐chain and the backbone nitrogen atom of proline leads to the formation of the five‐membered pyrrolidine ring and hence restriction of the backbone torsional angle ? to values of ?60 °± 30° for the L ‐proline. Diproline segments constitute a chain fragment with considerably reduced conformational choices. In the current study, the conformational states for the diproline segment ( L Pro‐ L Pro) found in proteins has been investigated with an emphasis on the cis and trans states for the Pro‐Pro peptide bond. The occurrence of diproline segments in turns and other secondary structures has been studied and compared to that of Xaa‐Pro‐Yaa segments in proteins which gives us a better understanding on the restriction imposed on other residues by the diproline segment and the single proline residue. The study indicates that PII–PII and PII–α are the most favorable conformational states for the diproline segment. The analysis on Xaa‐Pro‐Yaa sequences reveals that the Xaa‐Pro peptide bond exists preferably as the trans conformer rather than the cis conformer. The present study may lead to a better understanding of the behavior of proline occurring in diproline segments which can facilitate various designed diproline‐based synthetic templates for biological and structural studies. © 2011 Wiley Periodicals, Inc. Biopolymers 97: 54–64, 2012.  相似文献   

12.
Cynipid gall formation is achieved by an insect–plant interaction whereby cynipid gallwasps redirect host‐plant development to form novel structures to protect and nourish the developing larvae. Work was carried out to investigate the molecular mechanisms involved in this interaction, and extend the understanding of plant tissue development. Cytological changes of the inner‐gall tissue throughout the development of several gall species was investigated and the developmental stages of gall formation defined, to reveal two different patterns of development followed by the galls tested. Fluorescent in situ hybridization demonstrated many of the inner‐gall cells to be polytenized. Comparisons between inner‐gall and non‐gall tissue protein signatures by Schönrogge et al. (Plant, Cell and Environment 23, 215–222, 2000) have demonstrated the variation between gall and non‐gall protein signatures, and identified a number of inner‐gall proteins. Further analysis of one of these inner‐gall proteins involved in lipid synthesis, putative biotin carboxyl carrier protein (BCCP), revealed differential expression throughout development, and showed this expression to be concentrated in the inner‐gall tissue in all the gall species tested.  相似文献   

13.
Recently, we identified a novel disulfide oxidoreductase, SdbA, in the oral bacterium Streptococcus gordonii. Disulfide oxidoreductases form disulfide bonds in nascent proteins using a CXXC catalytic motif. Typically, the N‐terminal cysteine interacts with substrates, whereas the C‐terminal cysteine is buried and only reacts with the first cysteine of the motif. In this study, we investigated the SdbA C86P87D88C89 catalytic motif. In vitro, SdbA single cysteine variants at the N or C‐terminal position (SdbAC86P and SdbAC89A) were active but displayed different susceptibility to oxidation, and N‐terminal cysteine was prone to sulfenylation. In S. gordonii, mutants with a single N‐terminal cysteine were inactive and formed unstable disulfide adducts with other proteins. Activity was partially restored by inactivation of pyruvate oxidase, a hydrogen peroxide generator. Presence of the C‐terminal cysteine alone (in the SdbAC86P variant) could complement the ΔsdbA mutant and restore disulfide bond formation in recombinant and natural protein substrates. These results provide evidence that certain disulfide oxidoreductases can catalyze disulfide bond formation using a single cysteine of the CXXC motif, including the buried C‐terminal cysteine.  相似文献   

14.
Regulation of glutamine synthetase activity in Escherichia coli is mediated by covalent attachment and detachment of an adenylyl group to each subunit of the enzyme [Kingdon, H. S. et al., Proc. Nat. Acad. Sci., 58, 1703, (1967); Wulff, K. D. et al., Biochem. Biophys. Res. Commun.28, 740, (1967)]. Adenylylation and deadenylylation of the enzyme are both catalyzed by a single adenylyltransferase (ATase) whose activity is modulated by various metabolites and by a regulatory protein, PII [Shapiro, B. M., Biochemistry; Anderson, W. B. et al., Proc. Nat. Acad. Sci.67, 1761 (1970)].The present study confirms preliminary results [Brown, M. S. et al., Proc. Nat. Acad. Sci.68, 2949 (1971)] showing that: (1) the regulatory protein (PII) exists in two interconvertible forms, PIIA and PIID, which, respectively, stimulate adenylylation and deadenylylation activity of ATase; (2) conversion of PIIA to PIID requires the presence of UTP, 2-oxoglutarate, ATP, and either Mg2+ or Mn2+; (3) this conversion involves covalent attachment of a uridine derivative to PIIA. It is further established that the covalently bound uridine derivative is UMP which is derived from UTP in a reaction catalyzed by a specific uridylyltransferase (UTase). Removal of the covalently bound UMP from PIID is catalyzed by a separate enzyme, referred to as the uridylyl-removing enzyme (UR-enzyme). This enzyme has an obligatory requirement for Mn2+.Regulation of glutamine synthetase activity in E. coli is thus facilitated by a highly sophisticated cascade system of proteins, consisting of an ATase, the regulatory protein (PII), UTase, and the UR-enzyme. The activities of these various components is rigorously controlled by various metabolites, including glutamine, 2-oxoglutarate, ATP, Pi, UTP, and the divalent cations, Mn2+ and Mg2+.  相似文献   

15.
16.
Aldosterone was isolated from hamster adrenal cells and was identified by high performance liquid chromatography and thermospray mass spectroscopy analysis. Basal outputs from adrenal cell suspensions were of the same order of magnitude, 8.4 ± 1.9 ng and 8.0 ± 0.7 ng/2 h/50,000 cells, for aldosterone and corticosteroid, respectively. The outputs of aldosterone and corticosteroid increased with K+ concentrations to reach maxima of 3.3- and 1.6-fold at 10 meq/l of K+. AngiotensinII (AII) produced dose-dependent increases in aldosterone and corticosteroid outputs with maxima of 3- and 4-fold, respectively. In contrast, ACTH induced relatively no changes in aldosterone output, whereas dose-dependent increases in corticosteroid output were found. In time study experiments, with 10−8 M AII, aldosterone and corticosteroid outputs were maximally increased after 1 h (6-fold) and 3 h (1.8-fold), respectively. At 10−8 M, ACTH had a small stimulatory effect on aldosterone output after 6 h, whereas it provoked a gradual increase in corticosteroid output (up to 7-fold after 8 h of incubation). The effects of AII and ACTH on adrenal cytochrome P-45011β involved in the last steps of aldosterone formation were evaluated by c combined in vivo andin vitro experiments. The P-45011β mRNA level was increased by a low sodium intake but not by a 24 h ACTH stimulus. These results taken together indicate that ACTH and AII differentially regulate P-45011β. It is postulated that these two regulatory peptides regulate the hamster adrenal steroidogenesis by different P-450 genes.  相似文献   

17.
Leaf responses to elevated atmospheric CO2 concentration (Ca) are central to models of forest CO2 exchange with the atmosphere and constrain the magnitude of the future carbon sink. Estimating the magnitude of primary productivity enhancement of forests in elevated Ca requires an understanding of how photosynthesis is regulated by diffusional and biochemical components and up‐scaled to entire canopies. To test the sensitivity of leaf photosynthesis and stomatal conductance to elevated Ca in time and space, we compiled a comprehensive dataset measured over 10 years for a temperate pine forest of Pinus taeda, but also including deciduous species, primarily Liquidambar styraciflua. We combined over one thousand controlled‐response curves of photosynthesis as a function of environmental drivers (light, air Ca and temperature) measured at canopy heights up to 20 m over 11 years (1996–2006) to generate parameterizations for leaf‐scale models for the Duke free‐air CO2 enrichment (FACE) experiment. The enhancement of leaf net photosynthesis (Anet) in P. taeda by elevated Ca of +200 μmol mol?1 was 67% for current‐year needles in the upper crown in summer conditions over 10 years. Photosynthetic enhancement of P. taeda at the leaf‐scale increased by two‐fold from the driest to wettest growing seasons. Current‐year pine foliage Anet was sensitive to temporal variation, whereas previous‐year foliage Anet was less responsive and overall showed less enhancement (+30%). Photosynthetic downregulation in overwintering upper canopy pine needles was small at average leaf N (Narea), but statistically significant. In contrast, co‐dominant and subcanopy L. styraciflua trees showed Anet enhancement of 62% and no AnetNarea adjustments. Various understory deciduous tree species showed an average Anet enhancement of 42%. Differences in photosynthetic responses between overwintering pine needles and subcanopy deciduous leaves suggest that increased Ca has the potential to enhance the mixed‐species composition of planted pine stands and, by extension, naturally regenerating pine‐dominated stands.  相似文献   

18.
The light-induced oxidation of the accessory donor tyrosine-D (YD) has been studied by measurements of the EPR Signal IIslow at room temperature in the autotrophically and photoheterotrophically cultivated alga Chlamydobotrys stellata. After illumination and dark adaptation, YD Signal IIslow was observed only in autotrophic algae, i.e. under conditions of a linear photosynthetic electron transfer from water to NADP+. The addition of artificial electron acceptors phenyl-p-benzoquinone (PPQ) or dichloro-p-benzoquinone (DCQ) to the autotrophic cells caused an almost negligible increase of this signal. When photosynthetic electron flow and oxygen evolution were diminished by removal of the carbon source CO2 and addition of acetate (photoheterotrophy), a pronounced YD Signal IIslow was seen only in presence of DCQ or PPQ. Several possibilities are discussed to explain the absence of YD Signal IIslow in photoheterotrophic Chl. stellata such as the existence of a cyclic PS II electron flow very effectively reducing P680 and thereby preventing the possibility of YD oxidation. Artificial electron acceptors withdraw electrons from this cycle thus keeping the primary quinone acceptor, QA, oxidized and thereby diminishing the reduction of P680 + by cyclic PSII. This leads to the appearance of the YD Signal IIslow also in the photoheterotrophically grown algae.Abbreviations A-band- thermoluminescence band associated with S2QA - charge recombination - DCQ- 2,5-dichlorobenzoquinone - D2- structure protein of Photosystem II - EPR- electron paramagnetic resonance - OEC- oxygen evolving complex - PPQ- phenyl-p-benzoquinone - PS II- Photosystem II - P680- reaction center of Photosystem II - Q-band- thermoluminescence band associated with S2QA - charge recombination - Si- oxidation levels of the OEC - YD- tyrosine-D accessory donor to P680 - YZ- tyrosine-Z electron donor to P680 Dedicated to Prof. Dr E. Schnepf/Heidelberg.  相似文献   

19.
Summary The role of theKlebsiella pneumoniae PII protein (encoded byglnB) in nitrogen regulation has been studied using two classes ofglnB mutants. In Class I mutants PII appears not to be uridylylated in nitrogen-limiting conditions and in Class II mutants PII is not synthesised. The effects of these mutations on expression from nitrogen-regulated promoters indicate that PII is not absolutely required for nitrogen control. Furthermore the uridylylated form of PII(PII-UMP) plays a significant role in the response to changes in nitrogen status by counteracting the effect of PII on NtrB-mediated dephosphorylation of NtrC. PII is not involved in thenif-specific response to changes in nitrogen status mediated by NifL.  相似文献   

20.
Pterisanthes (Vitaceae) is a genus of c. 20 species of scandent climbers endemic to Southeast Asia with unusual lamellate inflorescences. Molecular phylogenetic analysis supports its relationship in the well‐supported VitisAmpelocissusNothocissusPterisanthes clade (i.e. the AmpelocissusVitis clade). Shoot tips and floral buds were collected from wild and greenhouse‐grown P. eriopoda at different developmental stages and were examined using epi‐illumination, light and scanning electron microscopy. Inflorescence and floral ontogeny was studied to discover how the lamellate inflorescence evolved and to make morphological comparisons to infer relationships with closely related members of Vitaceae. The second‐order branches in P. eriopoda are racemose and develop helically around the inflorescence axis in a similar fashion to Vitis and Ampelocissus. Inflorescence branching is restricted to the second order in P. eriopoda, whereas in Vitis and most Ampelocissus species subsequent branching orders culminate in the typical vitaceous determinate dichasium. In P. eriopoda subsequent lateral growth of the second‐order branches combined with the inhibition of peduncle or pedicel formation and loss of dichasial branching results in the unique lamellae in Pterisanthes, on which the floral primordia arise directly in a helical pattern. Floral development in P. eriopoda is the same as in other genera of Vitaceae examined to date with initiation of floral whorls centripetally, the calyx ring developing first and calyx lobes fused to cover the petals and stamen primordia. Given the recent phylogenetic results that placed Pterisanthes firmly within Ampelocissus, the most likely scenario is that the Pterisanthes inflorescence is derived from the thyrse of an Ampelocissus‐like ancestor and that the thyrse is a morphological synapomorphy of the Ampelocissus–Vitis clade. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 725–741.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号