首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The archaeocete family Remingtonocetidae is a group of early cetaceans known from the Eocene of India and Pakistan. Previous studies of remingtonocetids focused primarily on cranial anatomy due to a paucity of well-preserved postcranial material. Here we describe the morphology of the known vertebral column in Remingtonocetus domandaensis based largely on a single well-preserved partial skeleton recovered from the upper Domanda Formation of Pakistan. The specimen preserves most of the precaudal vertebral column in articulation and includes seven complete cervical vertebrae, ten partial to complete thoracic vertebrae, six complete lumbar vertebrae, and the first three sacral vertebrae. Cervical centra are long and possess robust, imbricating transverse processes that stabilized the head and neck. Lumbar vertebrae allowed for limited flexibility and probably served primarily to stabilize the lumbar column during forceful retraction of the hind limbs. Vertebral evidence, taken together with pelvic and femoral morphology, is most consistent with interpretation of Remingtonocetus domandaensis as an animal that swam primarily by powerful movement of its hind limbs rather than dorsoventral undulation of its body axis.  相似文献   

2.
A “long‐backed” scenario of hominin vertebral evolution posits that early hominins possessed six lumbar vertebrae coupled with a high frequency of four sacral vertebrae (7:12‐13:6:4), a configuration acquired from a hominin‐panin last common ancestor (PLCA) having a vertebral formula of 7:13:6‐7:4. One founding line of evidence for this hypothesis is the recent assertion that the “Lucy” sacrum (A.L. 288‐1an, Australopithecus afarensis) consists of four sacral vertebrae and a partially‐fused first coccygeal vertebra (Co1), rather than five sacral vertebrae as in modern humans. This study reassesses the number of sacral vertebrae in Lucy by reexamining the distal end of A.L.288‐1an in the context of a comparative sample of modern human sacra and Co1 vertebrae, and the sacrum of A. sediba (MH2). Results demonstrate that, similar to S5 in modern humans and A. sediba, the last vertebra in A.L. 288‐1an exhibits inferiorly‐projecting (right side) cornua and a kidney‐shaped inferior body articular surface. This morphology is inconsistent with that of fused or isolated Co1 vertebrae in humans, which either lack cornua or possess only superiorly‐projecting cornua, and have more circularly‐shaped inferior body articular surfaces. The level at which the hiatus' apex is located is also more compatible with typical five‐element modern human sacra and A. sediba than if only four sacral vertebrae are present. Our observations suggest that A.L. 288‐1 possessed five sacral vertebrae as in modern humans; thus, sacral number in “Lucy” does not indicate a directional change in vertebral count that can provide information on the PLCA ancestral condition. Am J Phys Anthropol 156:295–303, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
A nearly complete skeleton of a juvenile sauropod from the Lower Morrison Formation (Late Jurassic, Kimmeridgian) of the Howe Ranch in Bighorn County, Wyoming is described. The specimen consists of articulated mid-cervical to mid-caudal vertebrae and most appendicular bones, but cranial and mandibular elements are missing. The shoulder height is approximately 67 cm, and the total body length is estimated to be less than 200 cm. Besides the body size, the following morphological features indicate that this specimen is an early juvenile; (1) unfused centra and neural arches in presacral, sacral and first to ninth caudal vertebrae, (2) unfused coracoid and scapula, (3) open coracoid foramen, and (4) relatively smooth articular surfaces on the limb, wrist, and ankle bones. A large scapula, short neck and tail and elongate forelimb bones relative to overall body size demonstrate relative growth. A thin-section of the mid-shaft of a femur shows a lack of annual growth lines, indicating an early juvenile individual possibly younger than a few years old. Pneumatic structures in the vertebral column of the specimen SMA 0009 show that pneumatisation of the postcranial skeleton had already started in this individual, giving new insights in the early ontogenetic development of vertebral pneumaticity in sauropods.

The specimen exhibits a number of diplodocid features (e.g., very elongate slender scapular blade with a gradually dorsoventrally expanded distal end, a total of nine dorsal vertebrae, presence of the posterior centroparapophyseal lamina in the posterior dorsal vertebrae). Although a few diplodocid taxa, Diplodocus, cf. Apatosaurus, and cf. Barosaurus, are known from several fossil sites near the Howe Ranch, identification of this specimen, even at a generic level, is difficult due to a large degree of ontogenetic variation.  相似文献   

4.
5.
A relatively well–preserved specimen of Cetiosaurus oxoniensis, from the Middle Jurassic (Bajocian) of Rutland, United Kingdom, is described in detail. The material includes a nearly complete cervical series, representative dorsal vertebrae, a fragment of sacrum, anterior caudals, the right femur, and numerous rib and limb fragments. Contrary to previous suggestions that this specimen possesses 14 cervical and ten dorsal vertebrae, it seems more probable that there were at most 13 cervicals and at least 12 dorsals. The vertebral column displays several autapomorphic features which supplement the generic diagnosis of Cetiosaurus, including: (1) a stout, anteriorly directed process located at the top of the neural spine of the twelfth (?) cervical vertebra; and (2) the presence of lateral pits, separated by a thin midline septum, below the transverse processes of middle dorsal vertebrae. Cladistic analysis indicates that Cetiosaurus is probably the sister–taxon to the advanced neosauropod clade. This relationship affects the distribution of particular character states that have played an important role in determining sauropod phylogeny.  相似文献   

6.
An articulated length of vertebral column is used as a basis for the reconstruction of the salient features of the axial skeleton of the embolomerous anthracosaur Eogyrinus attheyi Watson, together with other material, including the holotype, in the Hancock Museum, Newcastle upon Tyne.
The trunk vertebrae are typically emboloinerous, with disoshaped notochordal pleuro-centra, firmly attached by broad facets to this neural arches, and much thinner intercentra. Regional variation is chiefly concerned with the span of the transverse processes, which diminishes posteriorly, and the associated separation of the two heads of each rib. A longitudinal series of trunk ribs, of diminishing length from the mid-trunk backwards, is reconstructed.
Eogyrinus has a normal tetrapod sacrum with one characteristic sacral rib. The first few caudal vertebrae bear ribs of unusual form, (of which four are preserved in sequence in the articulated specimen. The fifth caudal intercentrum bears the first and largest haemal arch and the pleurocentrum of the seventh caudal is distinguished by marked muscle origins presumably for the caudifemoral muscles.
The probability that Eogyrinus, like the few other embolomeres known, had an unusually long vertebral column for a labyrinthodont, is supported by an orthometric comparison using Romer's data on the American form Archeria.  相似文献   

7.
8.
Aphaniops dispar, widespread around the Arabian Peninsula, was recently separated in four species (A. dispar, A. hormuzensis, A. kruppi, A. stoliczkanus) by molecular results and colour patterns, but the morphological differences are small and call for more studies. Here we report differences in skeleton and median fin osteology of these species. In addition, we introduce the term 'modified caudal vertebra' to describe caudal vertebrae that are not directly associated with caudal ray support but are visibly modified from a 'usual' caudal vertebra. Aphaniops hormuzensis, an endemic species to southern Iran, has a significantly higher number of modified caudal vertebrae compared to the more widespread A. stoliczkanus and A. dispar, and also to A. kruppi. This is a surprising result as the caudal skeleton and related structures of the posterior caudal vertebral column have yielded successful results in separating between families or genera, but there are only a few studies that have examined these structures for their role in species diagnosis. Our study also highlights that state-of-the-art methods in X-raying and improved staining procedures assist in the discrimination of superficially similar species.  相似文献   

9.
Body axes of fishes consist of two anatomically distinct types of vertebrae: abdominal and caudal. In the medaka Oryzias latipes, the number of abdominal vertebrae increases with increasing latitudes, whereas caudal vertebrae do not vary systematically across latitudes, suggesting local adaptation in abdominal vertebral numbers. However, because heritable variation in abdominal and caudal vertebral numbers has not been examined within each latitudinal population, it is not clear whether abdominal and caudal vertebrae can evolve independently. Offspring-midparent regression demonstrated substantial heritability of abdominal vertebral numbers in each of two latitudinal populations whereas the heritability of caudal vertebral numbers was not significant. Full-sib analyses revealed that intra-family variation was larger in caudal vertebrae than in abdominal vertebrae, indicating larger non-additive genetic variation and/or larger errors of development in the former. Moreover, the genetic correlation between abdominal and caudal vertebral numbers was very weak. These results suggest that abdominal and caudal vertebrae are controlled by separate developmental modules, which supports their independent evolution with local adaptation of abdominal vertebral numbers in this fish. On the other hand, the weak heritability of caudal vertebrae suggests that the evolution of caudal vertebrae may be restricted, causing unequal evolutionary lability between abdominal and caudal regions.  相似文献   

10.
11.
The study reports a reconstruction of the sacrum in STS 14 based on extrapolation from the measurements of the first two sacral vertebrae of STS 14 and of the angle formed by the anterior surfaces of their vertebral bodies. Reconstruction is based on comparisons of, and extrapolation from, sacra of Pan troglodytes, Homo sapiens, and Australopithecus afarensis. The reconstructed sacrum has an anterior sacral curvature of 39°. The two ossa coxae were also completed by mirror imaging of one side by the other. With the pelvis completely reconstructed, the pelvic dimensions for the antero-posterior (AP) diameters of the pelvic inlet, midpelvis, and pelvic outlet are 85, 68, and 69 mm and the corresponding transverse (TR) diameters are 109, 88, and 103 mm, respectively. The posterior sagittal diameters in the three pelvic planes are small compared to the anterior sagittal diameters. This analysis indicates that the STS 14 pelvis is platypelloid in the three pelvic planes; i.e., all the AP diameters are smaller than the corresponding TR diameters. This makes the STS 14 pelvis similar to that to Al 288-1, save for a less pronounced degree of platypelloidy at the inlet in the former. © 1995 Wiley-Liss, Inc.  相似文献   

12.
High assimilation sacrum is fusion of the caudal‐most lumbar vertebra to the first sacral vertebra. Previous studies have shown that high assimilation is associated with clinical problems, including obstetrical difficulty. This study used adult American males (n = 1,048) and females (n = 1,038) of the Hamann–Todd and Terry skeletal collections to determine the prevalence of high assimilation and its effect on pelvic size, and to consider the obstetrical and evolutionary implications of high assimilation. The prevalence of high assimilation in this sample is 6.3%, with males and females not differing significantly from one another in their prevalence. This prevalence is near the median for that reported in 41 other samples. In both males and females, individuals with high assimilation have significantly longer anteroposterior and posterior sagittal diameters of the inlet, and shorter sacrum compared to those with a nonassimilated sacrum. Females with high assimilation have a significantly narrower sacral angulation (i.e., reduced inclination of ventral axis of sacrum), and shorter posterior sagittal diameter of the outlet compared to those with a nonassimilated sacrum. A short posterior sagittal diameter of the outlet is associated with childbirth difficulty. As high assimilation is partial homeotic transformation of a lumbar vertebra, this study supports previous research that homeotic transformation of vertebrae is selectively disadvantageous. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
IS-Tlk/Kyo, a mutant derived from IS/Kyo strain, exhibits a kinked and/or short tail, in addition to the congenital lumbar vertebral anomaly. Homozygotes of Tlk dominant gene are known to die during embryonic development. We previously reported the morphological features of the skeleton in IS/Kyo and IS-Tlk/Kyo fetuses and of the heart in IS/Kyo fetuses [19]. This study was conducted to clarify the morphological features of the skeleton in both adult rats and of the heart in adult IS/Kyo rats. Ventricular septal defect (VSD) was observed in 3 out of 10 IS/Kyo rats. Neither splitting of lumbar vertebra and supernumerary rib (in both strains) nor fused or absent caudal cartilage (in IS-Tlk/Kyo strain) was detected in adult rats. Fusion of lumbar vertebrae was observed in almost all specimens together with lumbarization of sacral vertebrae in a few specimens in both adult rats as well as fusion of sacral and caudal vertebrae only in adult IS-Tlk/Kyo rats. In addition, a severe reduction in the ossified sacral and caudal vertebrae was noted in adult IS-Tlk/Kyo rats (mean number: 20.6) and IS/Kyo rats (31.8), and the difference was similar to that in the length of sacral and caudal vertebrae. These results suggest that the Tlk gene may be involved in both the congenital and acquired abnormal formation of the lower vertebral centra as well as the persistent occurrence of VSD by the background gene in IS/Kyo strain.  相似文献   

14.
As the sacrum contributes to the size and shape of the birth canal, the sexually dimorphic sacrum of humans is frequently interpreted within obstetric contexts. However, while the human sacrum has been extensively studied, comparatively little is known about sacral morphology in nonhuman primates. Thus, it remains unclear whether sacral sexual dimorphism exists in other primates, and whether potential dimorphism is primarily related to obstetrics or other factors such as body size dimorphism. In this study, sacra of Homo sapiens, Hylobates lar, Nasalis larvatus, Gorilla gorilla, Pongo pygmaeus, Pan troglodytes, and Pan paniscus were evaluated for sexual dimorphism in relative sacral breadth (i.e., the ratio of overall sacral breadth to first sacral vertebral body breadth). Homo sapiens, H. lar, N. larvatus, and G. gorilla exhibit dimorphism in this ratio. Of these, the first three species have large cephalopelvic proportions, whereas G. gorilla has small cephalopelvic proportions. P. pygmaeus, P. troglodytes, and P. paniscus, which all have small cephalopelvic proportions, were not dimorphic for relative sacral breadth. We argue that among species with large cephalopelvic proportions, wide sacral alae in females facilitate birth by increasing the pelvic inlet's transverse diameter. However, given the small cephalopelvic proportions among gorillas, an obstetric basis for dimorphism in relative sacral breadth appears unlikely. This raises the possibility that sacral dimorphism in gorillas is attributable to selection for relatively narrow sacra in males rather than relatively broad sacra in females. Accordingly, these results have implications for interpreting pelvic dimorphism among fossil primates, including hominins. Am J Phys Anthropol 152:435–446, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Vaglia, JL., White, K, and Case, A. 2012. Evolving possibilities: postembryonic axial elongation in salamanders with biphasic (Eurcyea cirrigera, Eurycea longicauda, Eurycea quadridigitata) and paedomorphic life cycles (Eurycea nana and Ambystoma mexicanum). —Acta Zoologica (Stockholm) 93 : 2–13. Typically, the number of vertebrae an organism will have postembryonically is determined during embryogenesis via the development of paired somites. Our research investigates the phenomenon of postembryonic vertebral addition in salamander tails. We describe body and tail growth and patterns of postsacral vertebral addition and elongation in context with caudal morphology for four plethodontids (Eurycea) and one ambystomatid. Eurycea nana and Ambystoma mexicanum have paedomorphic life cycles; Eurcyea cirrigera, Eurycea longicauda and Eurycea quadridigitata are biphasic. Specimens were collected, borrowed and/or purchased, and cleared and stained for bone and cartilage. Data collected include snout‐vent length (SVL), tail length (TL), vertebral counts and centrum lengths. Eurycea species with biphasic life cycles had TLs that surpassed SVL following metamorphosis. Tails in paedomorphic species elongated but rarely exceeded body length. Larger TLs were associated with more vertebrae and longer vertebrae in all species. We observed that rates of postsacral vertebral addition varied little amongst species. Regional variation along the tail becomes prominent following metamorphosis in biphasic developers. In all species, vertebrae in the posterior one‐half of the tail taper towards the tip. We suggest that a developmental link might exist between the ability to continually add vertebrae and regeneration in salamanders.  相似文献   

16.
The axial skeleton in most anuran families consists of or=7). Tadpoles from each genus are typically found in streams, where their extended caudal skeleton anchors muscles that facilitate tadpoles wiggling between plant debris and rocks or even burrowing into the stream bed. The extra centra of megophryids ossify differently in each genus. In Leptobrachella and Ophryophryne, the caudal centra ossify around the entire notochord, whereas in Megophrys and Xenophrys each develops from dorsal and ventral pairs of ossifications that expand to meet each other. The evolutionary loss of caudal centra, an apomorphic anuran trait, is reversed in larval megophryids and confirms that the machinery for caudal vertebral development has been retained in some modern anurans. A likely driving force in the reappearance of the trait in megophryids is the selective pressure associated with a riparian lifestyle.  相似文献   

17.
The authors mention that of late it has been recognized that, in any attempt to answer the question as to which vertebra of any lower animal answers to the first sacral vertebra of Man, the nervous no less than the osteological relations of the parts should be carefully investigated. And it has been considered that the nervous rather than the osteological relations should be deemed the more important: in fact it has been sometimes asserted that the nerves must be taken as the fixed points, and that the bones must rather have their homology decided by the nerves, than vice versa. Should it be possible to show that in any group of reptiles, both the nervous and osteological relatious of any vertebra constautly agree with the nervous and osteological relation of Man's first sacral vertebra, the homology between such two parts may well be taken as thereby established; but if either of these sets of relations exhibit discrepancy, then of course such homology cannot be considered satisfactorily determined. Nor can we justly set aside osteological in favour of nervous resemblances if it should turn out that the nerves themselves exhibit notable variations of conditions as we pass from one allied form to another–a fortiori if there should be variations in this respect even within the limits of a species. It might surely be anticipated that more or less variation would be found to exist inner‐vous as well as in skeletal structures; and in the event of such anticipations being justified, the determination of sacral homology must depend upon a comparison of the values of the conflicting claims of different degrees of resemblance in both the osseous and nervous systems–unless we prefer to consider the osteological sacrum and the nervous sacrum as two distinct structures, which may or may not completely coincide, and may or may not widely diverge. The authors afterwards discuss the opinions held by Professor Gegenbaur with regard to the pelvic relations in birds and some reptiles, also those of Professor Hoffmann concerning the lumbar and sacral plexuses of Batrachians and Reptiles. Then follows an account of dissections of the Chameleon (Cha‐mceleo vulgaris), the Green Lizard (Laeerta viridis), the common Teguexin (Teius teguexin), the Bearded Lizard (Grammatophora barbata), the Agama colonorum, the Tuberculated Lizard (Iguana tuberculata), and of the Monitor (M. arenaria). On these dissections are based some remarks on the general condition of the nervous and osseous structures of the sacral region in Lizards, according to their views and as compared with those held by G‐egenbaur and Hoffmann. To this succeed other chapters devoted to a consideration of the sacral region of Batraehians, to the sacral region of Mammals, and to the sacral region of Birds, each discussed in a similar spirit. Their generalizations to the foregoing may be thus summarized:– It appears, then, that in Lizards generally, the lumbar plexus may be formed by from two to three roots, aud that the most pre‐axial of these is here in advance of the fourth presacral nerve, while the most postaxial root is never more postaxial than the first presacral nerve. But Monitor and Ohamwleo present a slight exception in certain respects. In all the Eeptilia examined and enumerated by the authors, the transverse processes which abut against the ilium are wholly or in part parapophysial, and are in serial relation (serial liomo‐logues) with the capitular processes (or the capitular parts of the transverse processes) of the more preaxial vertebrae. The junction of the sacral vertebrae with the ilium is much postacetabular in Saurians; but in Crocodilia and Tortoises (some at least) it is about opposite the acetabulum. In Batrachians the transverse processes abutting against the ilium are parapophysial, but diapophysial in nature like those of Eeptiles. In Mammals as compared with Lizards, it would seem, with respect to nerves, that the first and second sacral vertebra? (say, for instance, of the Cat), answer very well to the two vertebrae with enlarged transverse processes of Lizards, while osteologically they of course also answer very well to them. There can be little doubt, however, that the first two sacral vertebrae of the Cat are to be considered homologous with the anterior human sacral vertebra1; and therefore it would seem that the two ilium‐joining vertebrse of Lizards should be considered homologous with the anterior human sacral vertebrae. In Man, the Cat, and also in other Mammals down to the Echidna, the transverse processes abutting against the ilium are parapophysial, like those of Eeptiles and Batrachians. In all the Mammals examined by the authors, however, the junction of the sacral transverse processes with the ilia is preacetabular, although that junction is much less preacetabular in position in Man than it is in most Mammals. Altogether, from the osseous and nervous conditions evinced together in the groups hitherto referred to, the authors propose the following definition of a “Sacral Vertebra” in Mammals, Eeptiles, and Batrachians:–“ vertebra'ivithparapophysial transverse processes winch abut against the ilium, preaxial or post‐axial or opposite to the acetabulum, and having a root of the sciatic plexus coming forth either immediately preaxiad or postaxiad of it.” This definition will exclude from the sacrum, as not abutting against the ilium, of Man, the more posterior vertebrse called “ sacral” in anthropotomy. But in the lower mammals (even already in Apes) the number of so‐called “ sacral ” vertebrre augments more or less with age by the ankylosis of the sacral vertebras, so as not to render the extent of the “ sacrum ” very variable. It would surely be well, then, to distinguish the human sacral vertebra, like the ribs, into true and false, those being the true sacral vertebrae which abut against the ilium. In Birds the determination of the homological relations of the different parts of the postdorsal part of the spinal column is a matter of much difficulty. On the whole, and seeing on the one hand the manifest homology between the sacral vertebrae of Man and Lizards by the help of Crocodiles and Tortoises, and on the other hand the manifest homology between the sacral vertebrae of Lizards and the posterior parapophysial vertebras of most Birds, the authors think it better to regard the latter vertebras in Birds as alone truly sacral, and to regard such forms as Bwceros, Pica, and certain Parrots as differing from the rule of the Class in the suppression of their parapophysial processes, sm&Fregatta as differing from the same rule by the development of parapophyses in all the vertebras of this region. The sacral vertebra? in Birds may be defined, then, as “vertebrce having one of the more postaxial roots of the sciatic plexus coming forth either immediately preaxiad or postaxiad, and having parapophysial transverse processes abutting against the ilium, such vertebra being placed immediately postaxiad to vertebra which are devoid of such parapophyses, or else being the homologues of a vertebra so conditioned in most birds. By the combination of these two definitions, as given above (the one for Mammals, Eeptiles, and Batrachians, and the other for Birds), it seems to the authors that the sacral vertebras may be defined in all Vertebrata above Pishes which have pelvic limbs.  相似文献   

18.
Functional interpretations of the postcranium of the late Miocene ape Oreopithecus bambolii are controversial. The claim that Oreopithecus practiced habitual terrestrial bipedalism is partly based on restored postcranial remains originally recovered from Baccinello, Tuscany ( Köhler and Moyà-Solà, 1997). The lower lumbar vertebrae of BA#72 were cited as evidence that Oreopithecus exhibits features indicative of a lordotic lumbar spine, including dorsal wedging of the vertebral bodies and a caudally progressive increase in postzygapophyseal interfacet distance. Here, we demonstrate why the dorsal wedging index value obtained by Köhler and Moyà-Solà (1997) for the BA#72 last lumbar vertebra is questionable due to distortion in that region, present a more reliable way to measure postzygapophyseal interfacet distance, and include an additional metric (laminar width) with which to examine changes in the transverse dimensions of the neural arches. We also quantify the external morphology of the BA#72 proximal sacrum, which, despite well-documented links between sacral morphology and bipedal locomotion, and excellent preservation of the sacral prezygapophyses, first sacral vertebral body, and right ala, was not evaluated by Köhler and Moyà-Solà (1997). Measures of postzygapophyseal interfacet distance and laminar width on the penultimate and last lumbar vertebrae of BA#72 reveal a pattern encompassed within the range of living nonhuman hominoids and unlike that of modern humans, suggesting that Oreopithecus did not possess a lordotic lumbar spine. Results further show that the BA#72 sacrum exhibits relatively small prezygapophyseal articular facet surface areas and mediolaterally narrow alae compared with modern humans, indicating that the morphology of the Oreopithecus sacrum is incompatible with the functional demands of habitual bipedal stance and locomotion. The Oreopithecus lumbosacral region does not exhibit adaptations for habitual bipedal locomotion.  相似文献   

19.
In adult humans, active bone marrow is confined to the proximal portion of the skeleton. Huggins and Blocksom (J. Exp. Med., 64: 253, '36) concluded that a high temperature is needed for hematopoiesis in rats. However, precise thermal regulation of human marrow was not found (Petrakis, J. Appl. Physiol., 4: 549, '52). Because these experiments made on the rat tail are the basis for a commonly accepted hypothesis attempting to explain marrow distribution in man, it was considered of importance to re-examine the caudal vertebra model upon which the temperature-gradient hypothesis is based. The sacral and coccygeal vertebrae were examined in rats, mice and humans with respect to marrow cellularity and temperature. In rats and mice and man it was observed that the transition between hematopoietically-active and inactive (fatty) vertebral marrow cavities is abrupt, occurring at the level of the first and second caudal and coccygeal vertebrae. All vertebrae distal to this point have fatty marrow. Of significance was the finding that the vertebral and coccygeal temperatures, as measured with a thermister needle, remain unaltered over this area of changing cellular activity. These anatomical and thermal observations of the caudal vertebrae of rats, mice, and humans indicate that the use of the tail as an experimental model does not support the hypothesis that temperature is a primary factor in the physiological maintenance of hematopoiesis in bone marrow. The possible relationship of hematopoietic activity to developmental and other factors peculiar to the caudal vertebra model is under study.  相似文献   

20.
In primates, tail length is subject to wide variation, and the tail may even be absent. Tail length varies greatly between each species group of the genus Macaca, which is explained by climatic factors and/or phylogeographic history. Here, tail length variability was studied in hybrids of the Japanese (M. fuscata) and Taiwanese (Macaca cyclopis) macaque, with various degrees of hybridization being evaluated through autosomal allele typing. Relative tail length (percent of crown–rump length) correlated well with the number of caudal vertebrae. Length profiles of caudal vertebrae of hybrids and parent species revealed a common pattern: the length of several proximal-most vertebrae do not differ greatly; then from the third or fourth vertebra, the length rapidly increases and peaks at around the fifth to seventh vertebra; then the length plateaus for several vertebrae and finally shows a gentle decrease. As the number of caudal vertebrae and relative tail length increase, peak vertebral length and lengths of proximal vertebrae also increase, except that of the first vertebra, which only shows a slight increase. Peak vertebral length and the number of caudal vertebrae explained 92?% of the variance in the relative tail length of hybrids. Relative tail length correlated considerably well with the degree of hybridization, with no significant deviation from the regression line being observed. Thus, neither significant heterosis nor hybrid depression occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号