首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Dihydroceramide is a lipid molecule generated via the action of (dihydro)ceramide synthases (CerSs), which use two substrates, namely sphinganine and fatty acyl-CoAs. Sphinganine is generated via the sequential activity of two integral membrane proteins located in the endoplasmic reticulum. Less is known about the source of the fatty acyl-CoAs, although a number of cytosolic proteins in the pathways of acyl-CoA generation modulate ceramide synthesis via direct or indirect interaction with the CerSs. In this study, we demonstrate, by proteomic analysis of immunoprecipitated proteins, that fatty acid transporter protein 2 (FATP2) (also known as very long-chain acyl-CoA synthetase) directly interacts with CerS2 in mouse liver. Studies in cultured cells demonstrated that other members of the FATP family can also interact with CerS2, with the interaction dependent on both proteins being catalytically active. In addition, transfection of cells with FATP1, FATP2, or FATP4 increased ceramide levels although only FATP2 and 4 increased dihydroceramide levels, consistent with their known intracellular locations. Finally, we show that lipofermata, an FATP2 inhibitor which is believed to directly impact tumor cell growth via modulation of FATP2, decreased de novo dihydroceramide synthesis, suggesting that some of the proposed therapeutic effects of lipofermata may be mediated via (dihydro)ceramide rather than directly via acyl-CoA generation. In summary, our study reinforces the idea that manipulating the pathway of fatty acyl-CoA generation will impact a wide variety of down-stream lipids, not least the sphingolipids, which utilize two acyl-CoA moieties in the initial steps of their synthesis.  相似文献   

2.
In order to study the basic physical phenomena underlying complex lipid transbilayer movement in biological membranes, we have measured the transmembrane diffusion of spin-labelled analogues of sphingolipids in phosphatidylcholine (PC) large unilamellar vesicles in the absence or presence of cholesterol, going from a fluid ( liquid disordered) ld, phase to a more viscous, liquid ordered (lo), phase. We have found cholesterol to reduce the transverse diffusion of glucosylceramide (GlcCer) and galactosylceramide (GalCer) in a concentration-dependent manner. However, surprisingly, we could neither detect any influence of cholesterol on the rapid flip-flop of ceramide nor on the flip-flop of dihydroceramide, for which the τ1/2 of flip-flop remains in the order of 1 minute at 20°C in the presence of cholesterol. As a consequence of rapid flip-flop of ceramide in both the lo and the ld phase, ceramide is likely to distribute between the two monolayers of a membrane, and could in principle partition into segregated domains in each side of the plasma membrane of eukaryotic cells.  相似文献   

3.
    
Sphingolipids such as ceramides (Cers) play important roles in cell proliferation, apoptosis, and cell cycle regulation. An increased Cer level is linked to the cytotoxic effects of several chemotherapeutics. Various selective cyclooxygenase-2 (COX-2) inhibitors induce anti-proliferative effects in tumor cells. We addressed the possible interaction of the selective COX-2 inhibitors, coxibs, with the sphingolipid pathway as an explanation of their anti-proliferative effects. Sphingolipids were measured using liquid chromatography tandem mass spectrometry. Treatment of various cancer cell lines with celecoxib significantly increased sphinganine, C(16:0)-, C(24:0)-, C(24:1)-dihydroceramide (dhCer) and led to a depletion of C(24:0)-, C(24:1)-Cer in a time- and concentration-dependent manner, whereas other coxibs had no effect. Using (13)C,(15)N-labeled l-serine, we demonstrated that the augmented dhCers after celecoxib treatment originate from de novo synthesis. Celecoxib inhibited the dihydroceramide desaturase (DEGS) in vivo with an IC(50) of 78.9 +/- 1.5 muM and increased total Cer level about 2-fold, indicating an activation of sphingolipid biosynthesis. Interestingly, inhibition of the sphingolipid biosynthesis by specific inhibitors of l-serine palmitoyltransferase diminished the anti-proliferative potency of celecoxib. In conclusion, induction of de novo synthesis of sphingolipids and inhibition of DEGS contribute to the anti-proliferative effects of celecoxib.  相似文献   

4.
Sphingolipid synthesis involves a highly conserved biosynthetic pathway that produces fundamental precursors of complex sphingolipids. The final reaction involves the insertion of a double bond into dihydroceramides to generate the more abundant ceramides, which are converted to sphingomyelins and glucosylceramides/gangliosides by the addition of polar head groups. Although ceramides have long been known to mediate cellular stress responses, the dihydroceramides that are transiently produced during de novo sphingolipid synthesis were deemed inert. Evidence published in the last few years suggests that these dihydroceramides accumulate to a far greater extent in tissues than previously thought. Moreover, they have biological functions that are distinct and non-overlapping with those of the more prevalent ceramides. Roles are being uncovered in autophagy, hypoxia, and cellular proliferation, and the lipids are now implicated in the etiology, treatment, and/or diagnosis of diabetes, cancer, ischemia/reperfusion injury, and neurodegenerative diseases. This minireview summarizes recent findings on this emerging class of bioactive lipids.  相似文献   

5.
    
We applied a metabolic approach to investigate the role of sphingolipids in cell density-induced growth arrest in neuroblastoma cells. Our data revealed that sphingolipid metabolism in neuroblastoma cells significantly differs depending on the cells' population context. At high cell density, cells exhibited G0/G1 cell-cycle arrest and reduced ceramide, monohexosylceramide, and sphingomyelin, whereas dihydroceramide was significantly increased. In addition, our metabolic-labeling experiments showed that neuroblastoma cells at high cell density preferentially synthesized very long chain (VLC) sphingolipids and dramatically decreased synthesis of sphingosine-1-phosphate (S1P). Moreover, densely populated neuroblastoma cells showed increased message levels of both anabolic and catabolic enzymes of the sphingolipid pathway. Notably, our metabolic-labeling experiments indicated reduced dihydroceramide desaturase activity at confluence, which was confirmed by direct measurement of dihydroceramide desaturase activity in situ and in vitro. Importantly, we could reduce dihydroceramide desaturase activity in low-density cells by applying conditional media from high-density cells, as well as by adding reducing agents, such as DTT and L-cysteine to the media. In conclusion, our data suggest a role of the sphingolipid pathway, dihydroceramides desaturase in particular, in confluence-induced growth arrest in neuroblastoma cells.  相似文献   

6.
    
《Journal of lipid research》2016,57(11):2040-2050
  相似文献   

7.
    
Ceramide is a lipid moiety synthesized via the enzymatic activity of ceramide synthases (CerSs), six of which have been identified in mammalian cells, and each of which uses a unique subset of acyl-CoAs for ceramide synthesis. The CerSs are part of a larger gene family, the Tram-Lag-CLN8 domain family. Here, we identify a unique, C-terminal motif, the DxRSDxE motif, which is only found in CerSs and not in other Tram-Lag-CLN8 family members. Deletion of this motif in either CerS2 or in CerS6 did not affect the ability of either enzyme to generate ceramide using both an in vitro assay and metabolic labeling, but deletion of this motif did affect the activity of CerS2 when coexpressed with CerS6. Surprisingly, transfection of cells with either CerS2 or CerS6 lacking the motif did not result in changes in cellular ceramide levels. We found that CerS2 and CerS6 interact with each other, as shown by immunoprecipitation, but deletion of the DxRSDxE motif impeded this interaction. Moreover, proteomics analysis of cells transfected with CerS6Δ338–344 indicated that deletion of the C-terminal motif impacted cellular protein expression, and in particular, the levels of ORMDL1, a negative regulator of sphingolipid synthesis. We suggest that this novel C-terminal motif regulates CerS dimer formation and thereby impacts ceramide synthesis.  相似文献   

8.
9.
Dihydroceramide desaturase activity in the transplantable mouse hepatoma-22, rat hepatoma-27, M1 sarcoma, and RS1 rat cholangiocellular carcinoma has been investigated. It was found that the dihydroceramide desaturase activity in mouse hepatoma-22 is lower than that in normal mouse liver. However, the activity of this enzyme in subcutaneously and intrahepatically transplanted rat hepatoma-27 is increased compared to normal value. Dihydroceramide desaturase activity in subcutaneously and intrahepatically transplanted M1 sarcoma as well as in hepatoma-27 is dependent on the tumor microenvironment. The enzyme activity in RS1 tumor was not revealed. The data indicate that dihydroceramide desaturase activity depends on the tumor type and its microenvironment.  相似文献   

10.
    
《Journal of lipid research》2017,58(7):1439-1452
  相似文献   

11.
    
Mammalian ceramide synthases 1 to 6 (CerS1-6) generate Cer in an acyl-CoA-dependent manner, and expression of individual CerS has been shown to enhance the synthesis of ceramides with particular acyl chain lengths. However, the contribution of each CerS to steady-state levels of specific Cer species has not been evaluated. We investigated the knockdown of individual CerS in the MCF-7 human breast adenocarcinoma cell line by using small-interfering RNA (siRNA). We found that siRNA-induced downregulation of each CerS resulted in counter-regulation of nontargeted CerS. Additionally, each CerS knockdown produced unique effects on the levels of multiple sphingolipid species. For example, downregulation of CerS2 decreased very long-chain Cer but increased levels of CerS4, CerS5, and CerS6 expression and upregulated long-chain and medium-long-chain sphingolipids. Conversely, CerS6 knockdown decreased C16:0-Cer but increased CerS5 expression and caused non-C16:0 sphingolipids to be upregulated. Knockdown of individual CerS failed to decrease total sphingolipids or upregulate sphingoid bases. Treatment with siRNAs targeting combined CerS, CerS2, CerS5, and CerS6, did not change overall Cer or sphingomyelin mass but caused upregulation of dihydroceramide and hexosyl-ceramide and promoted endoplasmic reticulum stress. These data suggest that sphingolipid metabolism is robustly regulated by both redundancy in CerS-mediated Cer synthesis and counter-regulation of CerS expression.  相似文献   

12.
    
《Journal of lipid research》2019,60(9):1590-1602
  相似文献   

13.
    
Previous studies from our laboratory and others presented evidence that oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphatidylcholine (OxPAPC) and oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphatidylethanolamine can inhibit lipopolysaccharide (LPS)-mediated induction of interleukin-8 (IL-8) in endothelial cells. Using synthetic derivatives of phosphatidylethanolamine, we now demonstrate that phospholipid oxidation products containing alpha,beta-unsaturated carboxylic acids are the most active inhibitors we examined. 5-Keto-6-octendioic acid ester of 2-phosphatidylcholine (KOdiA-PC) was 500-fold more inhibitory than OxPAPC, being active in the nanomolar range. Our studies in human aortic endothelial cells identify one important mechanism of the inhibitory response as involving the activation of neutral sphingomyelinase. There is evidence that Toll-like receptor-4 and other members of the LPS receptor complex must be colocalized to the caveolar/lipid raft region of the cell, where sphingomyelin is enriched, for effective LPS signaling. Previous work from our laboratory suggested that OxPAPC could disrupt this caveolar fraction. These studies present evidence that OxPAPC activates sphingomyelinase, increasing the levels of 16:0, 22:0, and 24:0 ceramide and that the neutral sphingomyelinase inhibitor GW4869 reduces the inhibitory effect of OxPAPC and KOdiA-PC. We also show that cell-permeant C6 ceramide, like OxPAPC, causes the inhibition of LPS-induced IL-8 synthesis and alters caveolin distribution similar to OxPAPC. Together, these data identify a new pathway by which oxidized phospholipids inhibit LPS action involving the activation of neutral sphingomyelinase, resulting in a change in caveolin distribution. Furthermore, we identify specific oxidized phospholipids responsible for this inhibition.  相似文献   

14.
    
It has been increasingly recognized at the basic science level that perturbations in ceramide metabolism are associated with the development and progression of many age‐related diseases. However, the translation of this work to the clinic has lagged behind. Understanding the factors longitudinally associated with plasma ceramides and dihydroceramides (DHCer) at the population level and how these lipid levels change with age, and by sex, is important for the clinical development of future therapeutics and biomarkers focused on ceramide metabolism. We, therefore, examined factors cross‐sectionally and longitudinally associated with plasma concentrations of ceramides and DHCer among Baltimore Longitudinal Study of Aging participants (n = 992; 3960 total samples), aged 55 years and older, with plasma at a mean of 4.1 visits (range 2–6). Quantitative analyses were performed on a high‐performance liquid chromatography‐coupled electrospray ionization tandem mass spectrometer. Linear mixed models were used to assess the relationships between plasma ceramide and DHCer species and demographics, diseases, medications, and lifestyle factors. Women had higher plasma concentrations of most ceramide and DHCer species and showed steeper trajectories of age‐related increases compared to men. Ceramides and DHCer were more associated with waist–hip ratio than body mass index. Plasma cholesterol and triglycerides, prediabetes, and diabetes were associated with ceramides and DHCer, but the relationship showed specificity to the acyl chain length and saturation. These results demonstrate the importance of examining the individual species of ceramides and DHCer, and of establishing whether intra‐individual age‐ and sex‐specific changes occur in synchrony to disease onset and progression.  相似文献   

15.
  总被引:1,自引:0,他引:1  
Increased mitochondrial ceramide levels are associated with the initiation of apoptosis. There is evidence that ceramide is causal. Thus, the conversion of the precursor, dihydroceramide, to ceramide by the enzyme dihydroceramide desaturase may be important in preparing the cell for apoptosis. Ceramide can initiate apoptosis by permeabilizing the mitochondrial outer membrane to apoptosis-inducing proteins. However, the mitochondrion's ability to produce ceramide may be limited by its proteome. Here, we show that ceramide synthesized in isolated mammalian endoplasmic reticulum (ER) vesicles from either C8-dihydroceramide or sphingosine to produce long-chain ceramide can transfer to isolated mitochondria. The rate of transfer is consistent with a simple collision model. The transfer of the long-chain ceramide is faster than expected for an uncatalyzed process. Sufficient ceramide is transferred to permeabilize the outer membrane to cytochrome c and adenylate kinase. The mitochondria-associated membranes, ER-like membranes that are tightly associated with isolated mitochondria, can produce enough ceramide to permeabilize the outer membrane transiently. Thus, this ceramide exchange obviates the need for a complete ceramide de novo pathway in mitochondria to increase ceramide levels to the critical value required for functional changes, such as ceramide channel self-assembly followed by protein release.  相似文献   

16.
We provide evidence that the sphingolipid ceramide, in addition to its pro-apoptotic function, regulates neural progenitor (NP) motility in vitro and brain development in vivo . Ceramide ( N -palmitoyl d -erythro sphingosine and N -oleoyl d -erythro sphingosine) and the ceramide analog N -oleoyl serinol (S18) stimulate migration of NPs in scratch (wounding) migration assays. Sphingolipid depletion by inhibition of de novo ceramide biosynthesis, or ceramide inactivation using an anti-ceramide antibody, obliterates NP motility, which is restored by ceramide or S18. These results suggest that ceramide is crucial for NP motility. Wounding of the NP monolayer activates neutral sphingomyelinase indicating that ceramide is generated from sphingomyelin. In membrane processes, ceramide is co-distributed with its binding partner atypical protein kinase C ζ/λ (aPKC), and Cdc42, α/β-tubulin, and β-catenin, three proteins involved in aPKC-dependent regulation of cell polarity and motility. Sphingolipid depletion by myriocin prevents membrane translocation of aPKC and Cdc42, which is restored by ceramide or S18. These results suggest that ceramide-mediated membrane association of aPKC/Cdc42 is important for NP motility. In vivo , sphingolipid depletion leads to ectopic localization of mitotic or post-mitotic neural cells in the embryonic brain, while S18 restores the normal brain organization. In summary, our study provides novel evidence that ceramide is critical for NP motility and polarity in vitro and in vivo .  相似文献   

17.
    
《Journal of lipid research》2016,57(8):1412-1422
  相似文献   

18.
19.
    
Ceramide (Cer) is involved in the regulation of several cellular processes by mechanisms that depend on Cer-induced changes on membrane biophysical properties. Accumulating evidence shows that Cers with different N-acyl chain composition differentially impact cell physiology, which may in part be due to specific alterations in membrane biophysical properties. We now address how the sphingolipid (SL) N-acyl chain affects membrane properties in cultured human embryonic kidney cells by overexpressing different Cer synthases (CerSs). Our results show an increase in the order of cellular membranes in CerS2-transfected cells caused by the enrichment in very long acyl chain SLs. Formation of Cer upon treatment of cells with bacterial sphingomyelinase promoted sequential changes in the properties of the membranes: after an initial increase in the order of the fluid plasma membrane, reorganization into domains with gel-like properties whose characteristics are dependent on the acyl chain structure of the Cer was observed. Moreover, the extent of alterations of membrane properties correlates with the amount of Cer formed. These data reinforce the significance of Cer-induced changes on membrane biophysical properties as a likely molecular mechanism by which different acyl chain Cers exert their specific biological actions.  相似文献   

20.
在离休兔基底动脉观察了CO_2浓度、pH值对血管缺氧反应的影响。在以5-羟色胺(5-HT,10 ̄(-6)mol/L)预收缩后,缺氧使血管张力升高(T_H)114.87±40.75mg,其占总张力变化的百分数T(%)为48.62±12.11(n=51)。去内皮对缺氧性收缩无影响。随浴槽液中CO_2浓度增加,缺氧性收缩幅度减弱,在Pco_2为8.00、9.33和10.67kP8时,T(%)仅分别为38.30±5.36(n=11)、32.25±7.76(n=13)和29.90±9.26(n=11),较对照值(Pco_2=5.33kPa时)均有显著差异(P<0.01)。pH7.2-7.7时血管缺氧反应无显著变化。一氧化氮合成酶抑制剂L-NNA(10 ̄(-6)mol/L可抑制血管的缺氧收缩反应,也抑制了不同CO_2浓度对缺氧反应的影响。结果提示CO_2可能经促血管分泌一氧化氮的功能而抑制了缺氧性收缩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号