首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GINS is a protein complex found in eukaryotic cells that is composed of Sld5p, Psf1p, Psf2p, and Psf3p. GINS polypeptides are highly conserved in eukaryotes, and the GINS complex is required for chromosomal DNA replication in yeasts and Xenopus egg. This study reports purification and biochemical characterization of GINS from Saccharomyces cerevisiae. The results presented here demonstrate that GINS forms a 1:1 complex with DNA polymerase epsilon (Pol epsilon) holoenzyme and greatly stimulates its catalytic activity in vitro. In the presence of GINS, Pol epsilon is more processive and dissociates more readily from replicated DNA, while under identical conditions, proliferating cell nuclear antigen slightly stimulates Pol epsilon in vitro. These results strongly suggest that GINS is a Pol epsilon accessory protein during chromosomal DNA replication in budding yeast. Based on these results, we propose a model for molecular dynamics at eukaryotic chromosomal replication fork.  相似文献   

2.
DNA polymerase epsilon interacts with the CMG (Cdc45-MCM-GINS) complex by Dpb2p, the non-catalytic subunit of DNA polymerase epsilon. It is postulated that CMG is responsible for targeting of Pol ɛ to the leading strand. We isolated a mutator dpb2-100 allele which encodes the mutant form of Dpb2p. We showed previously that Dpb2-100p has impaired interactions with Pol2p, the catalytic subunit of Pol ɛ. Here, we present that Dpb2-100p has strongly impaired interaction with the Psf1 and Psf3 subunits of the GINS complex. Our in vitro results suggest that while dpb2-100 does not alter Pol ɛ’s biochemical properties including catalytic efficiency, processivity or proofreading activity – it moderately decreases the fidelity of DNA synthesis. As the in vitro results did not explain the strong in vivo mutator effect of the dpb2-100 allele we analyzed the mutation spectrum in vivo. The analysis of the mutation rates in the dpb2-100 mutant indicated an increased participation of the error-prone DNA polymerase zeta in replication. However, even in the absence of Pol ζ activity the presence of the dpb2-100 allele was mutagenic, indicating that a significant part of mutagenesis is Pol ζ-independent. A strong synergistic mutator effect observed for transversions in the triple mutant dpb2-100 pol2-4 rev3Δ as compared to pol2-4 rev3Δ and dpb2-100 rev3Δ suggests that in the presence of the dpb2-100 allele the number of replication errors is enhanced. We hypothesize that in the dpb2-100 strain, where the interaction between Pol ɛ and GINS is weakened, the access of Pol δ to the leading strand may be increased. The increased participation of Pol δ on the leading strand in the dpb2-100 mutant may explain the synergistic mutator effect observed in the dpb2-100 pol3-5DV double mutant.  相似文献   

3.
The tetrameric GINS complex, consisting of Sld5-Psf1-Psf2-Psf3, plays an essential role in the initiation and elongation steps of eukaryotic DNA replication, although its biochemical function is unclear. Here we investigate the function of GINS in fission yeast, using fusion of Psf1 and Psf2 subunits to a steroid hormone-binding domain (HBD) to make GINS function conditional on the presence of β-estradiol. We show that inactivation of Psf1-HBD causes a tight but rapidly reversible DNA replication arrest phenotype. Inactivation of Psf2-HBD similarly blocks premeiotic DNA replication and leads to loss of nuclear localization of another GINS subunit, Psf3. Inactivation of GINS has distinct effects on the replication origin association and chromatin binding of two of the replicative DNA polymerases. Inactivation of Psf1 leads to loss of chromatin binding of DNA polymerase ε, and Cdc45 is similarly affected. In contrast, chromatin association of the catalytic subunit of DNA polymerase α is not affected by defective GINS function. We suggest that GINS functions in a pathway that involves Cdc45 and is necessary for DNA polymerase ε chromatin binding, but that a separate pathway sets up the chromatin association of DNA polymerase α.  相似文献   

4.
Fission yeast Bir1p/Cut17p/Pbh1p, the homolog of human Survivin, is a conserved chromosomal passenger protein that is required for cell division and cytokinesis. To study how Bir1p promotes accurate segregation of chromosomes, we generated and analyzed a temperature-sensitive allele, bir1-46, and carried out genetic screens to find genes that interact with bir1(+). We identified Psf2p, a component of the GINS complex required for DNA replication initiation, as a high-copy-number suppressor of the bir1-46 growth defect. Loss of Psf2p function by depletion or deletion or by use of a temperature-sensitive allele, psf2-209, resulted in chromosome missegregation that was associated with mislocalization of Bir1p. We also found that the human homolog of Psf2p, PSF2, was required for proper chromosome segregation. In addition, we observed that high-copy-number expression of Pic1p, the fission yeast homolog of INCENP (inner centromere protein), suppressed bir1-46. Pic1p exhibited a localization pattern typical of chromosomal passenger proteins. Deletion of pic1(+) caused chromosome missegregation phenotypes similar to those of bir1-46. Our data suggest that Bir1p and Pic1p act as part of a conserved chromosomal passenger complex and that Psf2p/GINS indirectly affects the localization and function of this complex in chromosome segregation, perhaps through an S-phase role in centromere replication.  相似文献   

5.
Initiation of chromosome DNA replication in eukaryotes is tightly regulated through assembly of replication factors at replication origins. Here, we investigated dependence of the assembly of the initiation complex on particular factors using temperature-sensitive fission yeast mutants. The psf3-1 mutant, a GINS component mutant, arrested with unreplicated DNA at the restrictive temperature and the DNA content gradually increased, suggesting a defect in DNA replication. The mutation impaired GINS complex formation, as shown by pull-down experiments. Chromatin immunoprecipitation assays indicated that GINS integrity was required for origin loading of Psf2, Cut5 and Cdc45, but not Sld3. In contrast, loading of Psf2 onto origins depended on Sld3 and Cut5 but not on Cdc45. These results suggest that Sld3 functions furthest upstream in initiation complex assembly, followed by GINS and Cut5, then Cdc45. Consistent with this conclusion, Cdc7-Dbf4 kinase (DDK) but not cyclin-dependent kinase (CDK) was required for Sld3 loading, whereas recruitment of the other factors depended on both kinases. These results suggest that DDK and CDK regulate distinct steps in activation of replication origins in fission yeast.  相似文献   

6.
In cancer cells ablation of the GINS complex member Psf2 elicits chromosome mis-segregation yet the precise role of Psf2 in mitosis is unknown. We investigated the putative mitotic role of the GINS complex using synchronized cultures of untransformed Human Dermal Fibroblasts (HDF). Metaphase spreads from Psf1/Psf2-depleted HDF were normal and mitotic exit of Psf1/Psf2-depleted cells was only slightly delayed, suggesting no direct role for the GINS complex in mitosis of untransformed cells. Because the GINS complex is required for initiation and elongation events during DNA replication we hypothesized that the mitotic delay of Psf1/Psf2-deficient cells resulted indirectly from defective DNA synthesis during a prior S-phase. Therefore, we investigated the effects of Psf1/Psf2-depletion on DNA replication. Recruitment of Mcm7 to chromatin during G1 was unaffected by Psf1/Psf2-ablation, indicating that replication licensing does not require GINS. However, chromatin-binding of Cdc45 and PCNA, onset of DNA synthesis and accumulation of G2/M markers were delayed in Psf1/Psf2-ablated cells. The cell cycle delay of Psf1/Psf2-depleted HDF was associated with several hallmarks of pre-malignancy including γH2AX, Thr 68-phosphorylated Chk2, and increased numbers of aberrant fragmented nuclei. Ectopic expression of catalytically-inactive Chk2 promoted S-phase and G2/M progression in Psf1/Psf2-depleted cells, as evidenced by modestly-increased rates of DNA synthesis and increased dephosphorylation of Cdc2. Therefore, S-phase progression of untransformed cells containing sub-optimal levels of Psf1/2 is associated with replication stress and acquisition of DNA damage. The ensuing Chk2-mediated DNA damage signalling likely contributes to maintenance of chromosomal integrity.  相似文献   

7.
In eukaryotes, the GINS complex is essential for DNA replication and has been implicated as having a role at the replication fork. This complex consists of four paralogous GINS subunits, Psf1, Psf2, Psf3 and Sld5. Here, we identify an archaeal GINS homologue as a direct interaction partner of the MCM helicase. The core archaeal GINS complex contains two subunits that are poorly conserved homologues of the eukaryotic GINS subunits, in complex with a protein containing a domain homologous to the DNA-binding domain of bacterial RecJ. Interaction studies show that archaeal GINS interacts directly with the heterodimeric core primase. Our data suggest that GINS is important in coordinating the architecture of the replication fork and provide a mechanism to couple progression of the MCM helicase on the leading strand with priming events on the lagging strand.  相似文献   

8.
In eukaryotic cells, DNA replication is carried out by the coordinated action of three DNA polymerases (Pols), Pol α, δ, and ε. In this report, we describe the reconstitution of the human four-subunit Pol ε and characterization of its catalytic properties in comparison with Pol α and Pol δ. Human Pol ε holoenzyme is a monomeric complex containing stoichiometric subunit levels of p261/Pol 2, p59, p17, and p12. We show that the Pol ε p261 N-terminal catalytic domain is solely responsible for its ability to catalyze DNA synthesis. Importantly, human Pol (hPol) ε was found more processive than hPol δ in supporting proliferating cell nuclear antigen-dependent elongation of DNA chains, which is in keeping with proposed roles for hPol ε and hPol δ in the replication of leading and lagging strands, respectively. Furthermore, GINS, a component of the replicative helicase complex that is composed of Sld5, Psf1, Psf2, and Psf3, was shown to interact weakly with all three replicative DNA Pols (α, δ, and ε) and to markedly stimulate the activities of Pol α and Pol ε. In vivo studies indicated that siRNA-targeted depletion of hPol δ and/or hPol ε reduced cell cycle progression and the rate of fork progression. Under the conditions used, we noted that depletion of Pol ε had a more pronounced inhibitory effect on cellular DNA replication than depletion of Pol δ. We suggest that reduction in the level of Pol δ may be less deleterious because of its collision-and-release role in lagging strand synthesis.  相似文献   

9.
DNA polymerase epsilon (Pol ε) synthesizes the leading strands, following the CMG (Cdc45, Mcm2-7, and GINS [Go-Ichi-Nii-San]) helicase that translocates on the leading-strand template at eukaryotic replication forks. Although Pol ε is essential for the viability of fission and budding yeasts, the N-terminal polymerase domain of the catalytic subunit, Cdc20/Pol2, is dispensable for viability, leaving the following question: what is the essential role(s) of Pol ε? In this study, we investigated the essential roles of Pol ε using a temperature-sensitive mutant and a recently developed protein-depletion (off-aid) system in fission yeast. In cdc20-ct1 cells carrying mutations in the C-terminal domain of Cdc20, the CMG components, RPA, Pol α, and Pol δ were loaded onto replication origins, but Cdc45 did not translocate from the origins, suggesting that Pol ε is required for CMG helicase progression. In contrast, depletion of Cdc20 abolished the loading of GINS and Cdc45 onto origins, indicating that Pol ε is essential for assembly of the CMG complex. These results demonstrate that Pol ε plays essential roles in both the assembly and progression of CMG helicase.  相似文献   

10.
The eukaryotic GINS complex has an essential role in the initiation and elongation phases of genome duplication. It is composed of four paralogous subunits--Sld5, Psf1, Psf2 and Psf3--which are ubiquitous and evolutionarily conserved in eukaryotic organisms. Here, we report the biochemical characterization of the human GINS complex (hGINS). The four hGINS subunits were coexpressed in Escherichia coli in a highly soluble form and purified as a complex. hGINS was shown to interact directly with the heterodimeric human DNA primase, by using either surface plasmon resonance measurements or by immunoprecipitation experiments carried out with anti-hGINS antibodies. The DNA polymerase alpha-primase synthetic activity was specifically stimulated by hGINS on various primed DNA templates. The significance of these findings is discussed in view of the molecular dynamics at the human replication fork.  相似文献   

11.
12.
Eukaryotic DNA replication is performed by high‐fidelity multi‐subunit replicative B‐family DNA polymerases (Pols) α, δ and ?. Those complexes are composed of catalytic and accessory subunits and organized in multicomplex machinery: the replisome. The fourth B‐family member, DNA polymerase zeta (Pol ζ), is responsible for a large portion of mutagenesis in eukaryotic cells. Two forms of Pol ζ have been identified, a hetero‐dimeric (Pol ζ2) and a hetero‐tetrameric (Pol ζ4) ones and recent data have demonstrated that Pol ζ4 is responsible for damage‐induced mutagenesis. Here, using yeast Pol ζ mutant defective in the assembly of the Pol ζ four‐subunit form, we show in vivo that [4Fe‐4S] cluster in Pol ζ catalytic subunit (Rev3p) is also required for spontaneous (wild‐type cells) and defective‐replisome‐induced mutagenesis – DRIM (pol3‐Y708A, pol2‐1 or psf1‐100 cells), when cells are not treated with any external damaging agents.  相似文献   

13.
Essential for the normal functioning of a cell is the maintenance of genomic integrity. Failure in this process is often catastrophic for the organism, leading to cell death or mis-proliferation. Central to genomic integrity is the faithful replication of DNA during S phase. The GINS complex has recently come to light as a critical player in DNA replication through stabilization of MCM2-7 and Cdc45 as a member of the CMG complex which is likely responsible for the processivity of helicase activity during S phase. The GINS complex is made up of 4 members in a 1:1:1:1 ratio: Psf1, Psf2, Psf3, And Sld5. Here we present the first analysis of the function of the Sld5 subunit in a multicellular organism. We show that Drosophila Sld5 interacts with Psf1, Psf2, and Mcm10 and that mutations in Sld5 lead to M and S phase delays with chromosomes exhibiting hallmarks of genomic instability.  相似文献   

14.
DNA polymerase delta (Pol delta) and DNA polymerase epsilon (Pol epsilon) are both required for efficient replication of the nuclear genome, yet the division of labor between these enzymes has remained unclear for many years. Here we investigate the contribution of Pol delta to replication of the leading and lagging strand templates in Saccharomyces cerevisiae using a mutant Pol delta allele (pol3-L612M) whose error rate is higher for one mismatch (e.g., T x dGTP) than for its complement (A x dCTP). We find that strand-specific mutation rates strongly depend on the orientation of a reporter gene relative to an adjacent replication origin, in a manner implying that >90% of Pol delta replication is performed using the lagging strand template. When combined with recent evidence implicating Pol epsilon in leading strand replication, these data support a model of the replication fork wherein the leading and lagging strand templates are primarily copied by Pol epsilon and Pol delta, respectively.  相似文献   

15.
We have purified wild type and exonuclease-deficient four-subunit DNA polymerase epsilon (Pol epsilon) complex from Saccharomyces cerevisiae and analyzed the fidelity of DNA synthesis by the two enzymes. Wild type Pol epsilon synthesizes DNA accurately, generating single-base substitutions and deletions at average error rates of 5' exonuclease activity is less accurate to a degree suggesting that wild type Pol epsilon proofreads at least 92% of base substitution errors and at least 99% of frameshift errors made by the polymerase. Surprisingly the base substitution fidelity of exonuclease-deficient Pol epsilon is severalfold lower than that of proofreading-deficient forms of other replicative polymerases. Moreover the spectrum of errors shows a feature not seen with other A, B, C, or X family polymerases: a high proportion of transversions resulting from T.dTTP, T.dCTP, and C.dTTP mispairs. This unique error specificity and amino acid sequence alignments suggest that the structure of the polymerase active site of Pol epsilon differs from those of other B family members. We observed both similarities and differences between the spectrum of substitutions generated by proofreading-deficient Pol epsilon in vitro and substitutions occurring in vivo in a yeast strain defective in Pol epsilon proofreading and DNA mismatch repair. We discuss the implications of these findings for the role of Pol epsilon polymerase activity in DNA replication.  相似文献   

16.
The eukaryotic GINS complex is essential for the establishment of DNA replication forks and replisome progression. We report the crystal structure of the human GINS complex. The heterotetrameric complex adopts a pseudo symmetrical layered structure comprising two heterodimers, creating four subunit-subunit interfaces. The subunit structures of the heterodimers consist of two alternating domains. The C-terminal domains of the Sld5 and Psf1 subunits are connected by linker regions to the core complex, and the C-terminal domain of Sld5 is important for core complex assembly. In contrast, the C-terminal domain of Psf1 does not contribute to the stability of the complex but is crucial for chromatin binding and replication activity. These data suggest that the core complex ensures a stable platform for the C-terminal domain of Psf1 to act as a key interaction interface for other proteins in the replication-initiation process.  相似文献   

17.
The eukaryotic GINS heterotetramer, consisting of Sld5, Psf1, Psf2, and Psf3, participates in “CMG complex” formation with mini-chromosome maintenance (MCM) and Cdc45 as a key component of a replicative helicase. There are only two homologs of the GINS proteins in Archaea, and these proteins, Gins51 and Gins23, form a heterotetrameric GINS with a 2:2 molar ratio. The Pyrococcus furiosus GINS stimulates the ATPase and helicase activities of its cognate MCM, whereas the Sulfolobus solfataricus GINS does not affect those activities of its cognate MCM, although the proteins bind each other. Intriguingly, Thermoplasma acidophilum, as well as many euryarchaea, have only one gene encoding the sequence homologous to that of archaeal Gins protein (Gins51) on the genome. In this study, we investigated the biochemical properties of the gene product (TaGins51). A gel filtration and electron microscopy revealed that TaGins51 forms a homotetramer. A physical interaction between TaGins51 and TaMcm was detected by a surface plasmon resonance analysis. Unexpectedly, TaGins51 inhibited the ATPase activity, but did not affect the helicase activity of its cognate MCM. These results suggest that another factor is required to form a stable helicase complex with MCM and GINS at the replication fork in T. acidophilum cells.  相似文献   

18.
Accurate DNA replication requires a complex interplay of many regulatory proteins at replication origins. The CMG (Cdc45·Mcm2-7·GINS) complex, which is composed of Cdc45, Mcm2-7, and the GINS (Go-Ichi-Ni-San) complex consisting of Sld5 and Psf1 to Psf3, is recruited by Cdc6 and Cdt1 onto origins bound by the heterohexameric origin recognition complex (ORC) and functions as a replicative helicase. Trypanosoma brucei, an early branched microbial eukaryote, appears to express an archaea-like ORC consisting of a single Orc1/Cdc6-like protein. However, unlike archaea, trypanosomes possess components of the eukaryote-like CMG complex, but whether they form an active helicase complex, associate with the ORC, and regulate DNA replication remains unknown. Here, we demonstrated that the CMG complex is formed in vivo in trypanosomes and that Mcm2-7 helicase activity is activated by the association with Cdc45 and the GINS complex in vitro. Mcm2-7 and GINS proteins are confined to the nucleus throughout the cell cycle, whereas Cdc45 is exported out of the nucleus after DNA replication, indicating that nuclear exclusion of Cdc45 constitutes one mechanism for preventing DNA re-replication in trypanosomes. With the exception of Mcm4, Mcm6, and Psf1, knockdown of individual CMG genes inhibits DNA replication and cell proliferation. Finally, we identified a novel Orc1-like protein, Orc1b, as an additional component of the ORC and showed that both Orc1b and Orc1/Cdc6 associate with Mcm2-7 via interactions with Mcm3. All together, we identified the Cdc45·Mcm2-7·GINS complex as the replicative helicase that interacts with two Orc1-like proteins in the unusual origin recognition complex in trypanosomes.  相似文献   

19.
The eukaryotic replisome is a crucial determinant of genome stability, but its structure is still poorly understood. We found previously that many regulatory proteins assemble around the MCM2‐7 helicase at yeast replication forks to form the replisome progression complex (RPC), which might link MCM2‐7 to other replisome components. Here, we show that the RPC associates with DNA polymerase α that primes each Okazaki fragment during lagging strand synthesis. Our data indicate that a complex of the GINS and Ctf4 components of the RPC is crucial to couple MCM2‐7 to DNA polymerase α. Others have found recently that the Mrc1 subunit of RPCs binds DNA polymerase epsilon, which synthesises the leading strand at DNA replication forks. We show that cells lacking both Ctf4 and Mrc1 experience chronic activation of the DNA damage checkpoint during chromosome replication and do not complete the cell cycle. These findings indicate that coupling MCM2‐7 to replicative polymerases is an important feature of the regulation of chromosome replication in eukaryotes, and highlight a key role for Ctf4 in this process.  相似文献   

20.
The isolation of DNA polymerase (Pol) epsilon from extracts of HeLa cells is described. The final fractions contained two major subunits of 210 and 50 kDa which cosedimented with Pol epsilon activity, similar to those described previously (Syvaoja, J., and Linn, S. (1989) J. Biol. Chem. 264, 2489-2497). The properties of the human Pol epsilon and the yeast Pol epsilon were compared. Both enzymes elongated singly primed single-stranded circular DNA templates. Yeast Pol epsilon required the presence of a DNA binding protein (SSB) whereas human Pol epsilon required the addition of SSB, Activator 1 and proliferating cell nuclear antigen (PCNA) for maximal activity. Both enzymes were totally unable to elongate primed DNA templates in the presence of salt; however, activity could be restored by the addition of Activator 1 and PCNA. Like Pol delta, Pol epsilon formed complexes with SSB-coated primed DNA templates in the presence of Activator 1 and PCNA which could be isolated by filtration through Bio-Gel A-5m columns. Unlike Pol delta, Pol epsilon bound to SSB-coated primed DNA in the absence of the auxiliary factors. In the presence of salt, Pol epsilon complexes were less stable than they were in the absence of salt. In the in vitro simian virus 40 (SV40) T antigen-dependent synthesis of DNA containing the SV40 origin of replication, yeast Pol epsilon but not human Pol epsilon could substitute for yeast or human Pol delta in the generation of long DNA products. However, human Pol epsilon did increase slightly the length of DNA chains formed by the DNA polymerase alpha-primase complex in SV40 DNA synthesis. The bearing of this observation on the requirement for a PCNA-dependent DNA polymerase in the synthesis and maturation of Okazaki fragments is discussed. However, no unique role for human Pol epsilon in the in vitro SV40 DNA replication system was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号