共查询到20条相似文献,搜索用时 0 毫秒
1.
M2 channel, an influenza virus transmembrane protein, serves as an important target for antiviral drug design. There are still discordances concerning the role of some residues involved in proton transfer as well as the mechanism of inhibition by commercial drugs. The viral M2 proteins show high conservativity; about 3/4 of the positions are occupied by one residue in over 95%. Nine M2 proteins from the H3N2 strain and possibly two proteins from H2N2 strains make a phylogenic cluster closely related to 2RLF. The variability range is limited to 4 residues/position with one exception. The 2RLF protein stands out by the presence of 2 serines at the positions 19 and 50, which are in most other M2 proteins occupied by cysteines. The study of correlated mutations shows that there are several positions with significant mutational correlation that have not been described so far as functionally important. That there are 5 more residues potentially involved in the M2 mechanism of action. The original software used in this work (Consensus Constructor, SSSSg, Corm, Talana) is freely accessible as stand-alone offline applications upon request to the authors. The other software used in this work is freely available online for noncommercial purposes at public services on bioinformatics such as ExPASy or NCBI. The study on mutational variability, evolutionary relationship, and correlated mutation presented in this paper is a potential way to explain more completely the role of significant factors in proton channel action and to clarify the inhibition mechanism by specific drugs. 相似文献
2.
The attachment of the hemagglutinin protein of the H1N1 subtype of the pandemic influenza A virus to the sialic acid receptor Sia(α2-6)Gal has contributed to the ability of the virus to replicate in the human body and transmit among humans. In view of the pandemic caused by the replication and transmission of the H1N1 virus, more studies on the specificity of hemagglutinin towards sialic acid and how it affects the replication and transmission ability of this virus among humans are needed. In this study, we have applied sequence, structural and functional analyses to the hemagglutinin protein of the pandemic H1N1 virus, with the aim of identifying amino acid mutation patterns that affect its specificity to sialic acid. We have also employed a molecular docking method to evaluate the complex formed between hemagglutinin protein and the sialic acid receptor. Based on our results, we suggest two possible mutation patterns, namely (1) positions 190 and 225 from glutamic acid and glycine to aspartic acid (E190D in A/Brevig Mission/1/18 (H1N1), A/New York/1/18(H1N1) and A/South Carolina/1/1918(H1N1) and G225D in A/South Carolina/1/1918(H1N1), A/South Carolina/1/1918(H1N1), and A/Puerto Rico/8/34(H1N1)), and (2) positions 226 and 228 from glutamine and glycine to leucine and serine, respectively (Q226L and G228S in A/Guiyang/1/1957(H2N2), A/Kayano/57(H2N2), A/Aichi/2/1968(H3N2), A/Hong Kong/1/1968(H3N2) and A/Memphis/1/68(H3N2)) that can potentially contribute to the specificity of hemagglutinin to Sia(α2-6)Gal, thereby enabling the replication and transmission of virus within and among humans. 相似文献
3.
The M2 protein of influenza A virus forms homotetrameric helix bundles, which function as proton-selective channels. The native form of the protein is 97 residues long, although peptides representing the transmembrane section display ion channel activity, which (like the native channel) is blocked by the antiviral drug amantadine. As a small ion channel, M2 may provide useful insights into more complex channel systems. Models of tetrameric bundles of helices containing either 18 or 22 residues have been simulated while embedded in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine bilayer. Several different starting models have been used. These suggest that the simulation results, at least on a nanosecond time scale, are sensitive to the exact starting structure. Electrostatics calculations carried out on a ring of four ionizable aspartate residues at the N-terminal mouth of the channel suggest that at any one time, only one will be in a charged state. Helix bundle models were mostly stable over the duration of the simulation, and their helices remained tilted relative to the bilayer normal. The M2 helix bundles form closed channels that undergo breathing motions, alternating between a tetramer and a dimer-of-dimers structure. Under these conditions either the channel forms a pocket of trapped waters or it contains a column of waters broken predominantly at the C-terminal mouth of the pore. These waters exhibit restricted motion in the pore and are effectively "frozen" in a way similar to those seen in previous simulations of a proton channel formed by a four-helix bundle of a synthetic leucine-serine peptide (, Biophys. J. 77:2400-2410). 相似文献
4.
I. V. Tarasenko A. I. Taranov A. P. Firsov S. V. Dolgov 《Applied Biochemistry and Microbiology》2013,49(8):695-701
The M2e peptide of the H5N1 A/Chicken/Kurgan/05/2005 avian influenza virus was successfully synthesized in transgenic tobacco plants. The amino-terminal segment of the M2 protein, comprised of 22, 30, or 43 amino acids, including the M2e peptide (M122, M130, and M143 variants, respectively), was translationally fused with the N-terminus of β-glucuronidase in the pBI121 plant expression vector. The nucleotide sequence of the target fragment was synthesized by ligation from synthetic oligonucleotides; its codon composition was adapted for expression in plants. Tobacco plants were successfully transformed with the obtained vectors (pBIM122, pBIM130, and pBIM143, respectively). In the plants transformed with pBIM143, the Ml43-β-glucuronidase fusion protein was not produced, probably due to the presence of the M2 protein transmembrane domain (25–43 aa of M2) in this construct. In the pBIM122- and pBIMl30-transformed plants, the target M2e peptide was expressed as a component of the Ml22-β-glucuronidase and M130-β-glucuronidase fusion proteins, respectively, as was detected by Western blot analysis. These proteins were detected as bands of the expected size without apparent degradation. As a result, the M2e peptide of the H5N1 avian influenza virus was successfully synthesized for the first time in nuclear-transformed transgenic plants. The results obtained in this study will be used for developing a transgenic plant-based edible antiinfluenza vaccine. 相似文献
5.
Rotanov M Grebennikova TV Burtseva EI Shevchenko ES 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》2008,(2):27-32
The results of molecular analysis of 15 influenza A(H3N2) and 17-A(H1N1) epidemic strains isolated in the Russian Federation in 1995-2007 are described. The analysis on the M2 and neuraminidase influenza A virus genes was performed. The M2 sequences analysis among the remantadin resistant viruses demonstrated the S31N substitution in all strains. Besides S31N substitution, additional mutations were detected in both proteins. Mutations associated with S31N substitution were detected in each virus subtype, which may be considered as new markers for the identification of remantadin-resistant strains. The sequencing of the NA segments from all viruses showed no amino acid substitutions known to cause resistance to neuraminidase inhibitors, which indicates susceptibility to NA inhibitors among the strains. 相似文献
6.
Evolutionary analysis of the influenza A virus M gene with comparison of the M1 and M2 proteins 总被引:13,自引:8,他引:13
下载免费PDF全文

Phylogenetic analysis of 42 membrane protein (M) genes of influenza A viruses from a variety of hosts and geographic locations showed that these genes have evolved into at least four major host-related lineages: (i) A/Equine/prague/56, which has the most divergent M gene; (ii) a lineage containing only H13 gull viruses; (iii) a lineage containing both human and classical swine viruses; and (iv) an avian lineage subdivided into North American avian viruses (including recent equine viruses) and Old World avian viruses (including avianlike swine strains). The M gene evolutionary tree differs from those published for other influenza virus genes (e.g., PB1, PB2, PA, and NP) but shows the most similarity to the NP gene phylogeny. Separate analyses of the M1 and M2 genes and their products revealed very different patterns of evolution. Compared with other influenza virus genes (e.g., PB2 and NP), the M1 and M2 genes are evolving relatively slowly, especially the M1 gene. The M1 and M2 gene products, which are encoded in different but partially overlapping reading frames, revealed that the M1 protein is evolving very slowly in all lineages, whereas the M2 protein shows significant evolution in human and swine lineages but virtually none in avian lineages. The evolutionary rates of the M1 proteins were much lower than those of M2 proteins and other internal proteins of influenza viruses (e.g., PB2 and NP), while M2 proteins showed less rapid evolution compared with other surface proteins (e.g., H3HA). Our results also indicate that for influenza A viruses, the evolution of one protein of a bicistronic gene can affect the evolution of the other protein.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
7.
The recent rise of a high-ranking adult male chimpanzee to the alpha male position of the Gombe National Park's Kasakela chimpanzee community is reported. The male Figan is the fourth individual to assume this status in the wild chimpanzees' social hierarchy during Goodall's 16 year study in Tanzania. The paper describes the overthrow of the previous top-ranking male, and the manner in which Figan has maintained his new position after the take-over. Emphasis is placed upon his relationship with his elder male sibling, Faben, and the second highest-ranking male in the community, Evered. 相似文献
8.
The cytoplasmic tail of the influenza A virus M2 protein plays a role in viral assembly 总被引:6,自引:8,他引:6
下载免费PDF全文

Iwatsuki-Horimoto K Horimoto T Noda T Kiso M Maeda J Watanabe S Muramoto Y Fujii K Kawaoka Y 《Journal of virology》2006,80(11):5233-5240
The viral replication cycle concludes with the assembly of viral components to form progeny virions. For influenza A viruses, the matrix M1 protein and two membrane integral glycoproteins, hemagglutinin and neuraminidase, function cooperatively in this process. Here, we asked whether another membrane protein, the M2 protein, plays a role in virus assembly. The M2 protein, comprising 97 amino acids, possesses the longest cytoplasmic tail (54 residues) of the three transmembrane proteins of influenza A viruses. We therefore generated a series of deletion mutants of the M2 cytoplasmic tail by reverse genetics. We found that mutants in which more than 22 amino acids were deleted from the carboxyl terminus of the M2 tail were viable but grew less efficiently than did the wild-type virus. An analysis of the virions suggested that viruses with M2 tail deletions of more than 22 carboxy-terminal residues apparently contained less viral ribonucleoprotein complex than did the wild-type virus. These M2 tail mutants also differ from the wild-type virus in their morphology: while the wild-type virus is spherical, some of the mutants were filamentous. Alanine-scanning experiments further indicated that amino acids at positions 74 to 79 of the M2 tail play a role in virion morphogenesis and affect viral infectivity. We conclude that the M2 cytoplasmic domain of influenza A viruses plays an important role in viral assembly and morphogenesis. 相似文献
9.
The M2 protein is an essential component of the Influenza virus’ infectivity cycle. It is a homo-tetrameric bundle forming a pH-gated H+ channel. The structure of M2 was solved by three different groups, using different techniques, protein sequences and pH environment. For example, solid-state NMR spectroscopy was used on a protein in lipid bilayers, while X-ray crystallography and solution NMR spectroscopy were applied on a protein in detergent micelles. The resulting structures from the above efforts are rather distinct. Herein, we examine the different structures under uniform conditions such as a lipid bilayer and specified protonation state. We employ extensive molecular dynamics simulations, in several protonation states, representing both closed and open forms of the channel. Exploring the properties of each of these structures has shown that the X-ray structure is more stable than the other structures according to various criteria, although its water conductance and water-wire formation do not correlate to the protonation state of the channel. 相似文献
10.
Hughes T Strongin B Gao FP Vijayvergiya V Busath DD Davis RC 《Biophysical journal》2004,87(1):311-322
We report the observation of influenza A M2 (M2) incorporated in a dipalmitoylphosphatidylcholine (DPPC) supported planar bilayer on mica, formed by use of a modified vesicle fusion method from proteoliposomes and visualized with contact mode atomic force microscopy. Incubation of proteoliposomes in a hyperosmotic solution and increased DPPC/M2 weight ratios improved supported planar bilayer formation by M2/DPPC proteoliposomes. M2's extra-bilayer domains were observed as particles estimated to protrude 1-1.5 nm above the bilayer surface and <4 nm in diameter. Particle density was 5-18% of the nominal tetramer density. Movement of observable M2 particles was independent of the probe tip. The mean lateral diffusion coefficient (D) of M2 was 4.4 +/- 1.0 x 10(-14) cm(2)/s. Eighty-two percent of observable particles were mobile on the observable timescale (D > 6 x 10(-15) cm(2)/s). Protein-protein interactions were also observed directly. 相似文献
11.
In this study, four possible conformations of the His-37 and Trp-41 residues for the closed state of the influenza M2 ion channel were identified by a conformation scan based on a solid-state NMR restraint. In the four conformations, the His-37 residue can be of either the t-160 or t60 rotamer, whereas Trp-41 can be of either the t-105 or t90 rotamer. These conformations were further analyzed by density functional theory calculations and molecular dynamics simulations, and the data indicate that the His-37 residue most likely adopts the t60 rotamer and should be monoprotonated at the delta-nitrogen site, whereas Trp-41 adopts the t90 rotamer. This result is consistent with published experimental data and points to a simple gating mechanism: in the closed state, the His-37 and Trp-41 residues adopt the (t60, t90) conformation, which nearly occludes the pore, preventing nonproton ions from passing through due to the steric and desolvation effects. Moreover, the His-37 tetrad interrupts the otherwise continuous hydrogen-bonding network of the pore water by forcing the water molecules above and below it to adopt opposite orientations, thus adding to the blockage of proton shuttling. The channel can be easily opened by rotating the His-37 chi2 angle from 60 to 0 degrees . This open structure allows pore water to penetrate the constrictive region and to form a continuous water wire for protons to shuttle through, while being still narrow enough to exclude other ions. 相似文献
12.
Mould JA Drury JE Frings SM Kaupp UB Pekosz A Lamb RA Pinto LH 《The Journal of biological chemistry》2000,275(40):31038-31050
The M(2) ion channel protein of influenza A virus is essential for mediating protein-protein dissociation during the virus uncoating process that occurs when the virus is in the acidic environment of the lumen of the secondary endosome. The difficulty of determining the ion selectivity of this minimalistic ion channel is due in part to the fact that the channel activity is so great that it causes local acidification in the expressing cells and a consequent alteration of reversal voltage, V(rev). We have confirmed the high proton selectivity of the channel (1.5-2.0 x 10(6)) in both oocytes and mammalian cells by using four methods as follows: 1) comparison of V(rev) with proton equilibrium potential; 2) measurement of pH(in) and V(rev) while Na(+)(out) was replaced; 3) measurements with limiting external buffer concentration to limit proton currents specifically; and 4) comparison of measurements of M(2)-expressing cells with cells exposed to a protonophore. Increased currents at low pH(out) are due to true activation and not merely increased [H(+)](out) because increased pH(out) stops the outward current of acidified cells. Although the proton conductance is the biologically relevant conductance in an influenza virus-infected cell, experiments employing methods 1-3 show that the channel is also capable of conducting NH(4)(+), probably by a different mechanism from H(+). 相似文献
13.
The M2 proton channels of influenza A and B viruses 总被引:1,自引:0,他引:1
14.
Molecular dynamics simulations have been performed on protonated four-helix bundles based on the 25-residue Duff-Ashley transmembrane sequence of the M2 channel of the influenza A virus. Well-equilibrated tetrameric channels, with one, two and four of the H37 residues protonated, were investigated. The protonated peptide bundles were immersed in the octane portion of a phase-separated water/octane system, which provided a membrane-mimetic environment. The simulations suggest that there could be two conducting states of the M2 channel corresponding to tetramers containing one or two protonated histidines. The more open structure of the doubly protonated state suggests it would have the higher conductance. 相似文献
15.
Moffat JC Vijayvergiya V Gao PF Cross TA Woodbury DJ Busath DD 《Biophysical journal》2008,94(2):434-445
Influenza A virus M2 protein is known to form acid-activated, proton-selective, amantadine-sensitive channels. We directly measured proton uptake in vesicles containing reconstituted M2 by monitoring external pH after addition of valinomycin to vesicles with 100-fold-diluted external [K+]. External pH typically increased by a few tenths of a pH unit over a few minutes after valinomycin addition, but proton uptake was not significantly altered by acidification. Under neutral conditions, external addition of 1 mM amantadine produced a reduction in flux consistent with randomly ordered channels; however, experimental variation is high with this method and the block was not statistically significant. Amantadine block was reduced at pH 5.4. In accord with Lin and Schroeder's study of reconstituted M2 using a pH-sensitive dye to monitor intravesicular pH, we conclude that bath pH weakly affects or does not significantly affect proton flow in the pH range 5.4-7.0 for the reconstituted system, contrary to results from electrophysiological studies. Theoretical analysis of the relaxation to Donnan equilibrium utilized for such vesicle uptake assays illuminates the appropriate timescale of the initial slope and an important limitation that must be placed on inferences about channel ion selectivity. The rise in pH over 10 s after ionophore addition yielded time-averaged single-channel conductances of 0.35 ± 0.20 aS and 0.72 ± 0.42 aS at pH 5.4 and 7.0, respectively, an order of magnitude lower than previously reported in vesicles. Assuming complete membrane incorporation and tetramerization of the reconstituted protein, such a low time-averaged conductance in the face of previously observed single-channel conductance (6 pS at pH 3) implies an open channel probability of 10−6-10−4. Based on leakage of potassium from M2-containing vesicles, compared to protein-free vesicles, we conclude that M2 exhibits ∼107 selectivity for hydrogen over potassium. 相似文献
16.
江丽君 《微生物学免疫学进展》2012,40(3):25-25
<正>背景:基质蛋白2的胞外域(M2e)是一种有希望的具有广谱保护作用的A型流感疫苗候选制剂,因为它是高度保守的,而且抗M2e抗体在动物模型中具有保护作用。STF2.4x M2e(VAX102)是一种重组融合蛋白,即M2e抗原的4个串联拷贝与鼠伤寒沙门菌的鞭毛蛋白相连接而构成的重组融合蛋 相似文献
17.
Stelios Eleftheratos Philip Spearpoint Gabriella Ortore Antonios Kolocouris Adriano Martinelli Stephen Martin Alan Hay 《Bioorganic & medicinal chemistry letters》2010,20(14):4182-4187
Interaction of aminoadamantanes with the influenza A virus M2 proton channel was analyzed by docking simulations of a series of synthetic aminoadamantane derivatives, of differing binding affinity, into the crystal structure of the transmembrane (M2TM) pore. The pore blocking model tested in the ‘gas phase’ describes qualitatively the changes on the relative binding affinities of the compounds (although a series of highly hydrophobic ligands which seem to have little capacity for different specific interactions with their receptor). The docking calculations predicted poses in which the adamantane ring is surrounded mainly by the alkyl side chains of Val27 or Ala30 and the ligand’s amino group is generally hydrogen bonded with hydroxyls of Ser31 or carbonyls of Val27 or carbonyls of Ala30, the former (Ser31) being the most stable and most frequently observed. The binding of the ligand is a compromise between hydrogen bonding ability, which is elevated by a primary amino group, and apolar interactions, which are increased by the ability of the lipophilic moiety to adequately fill a hydrophobic pocket within the M2TM pore. A delicate balance of these hydrophobic contributions is required for optimal interaction. 相似文献
18.
A universal influenza A vaccine based on the extracellular domain of the M2 protein. 总被引:27,自引:0,他引:27
The antigenic variation of influenza virus represents a major health problem. However, the extracellular domain of the minor, virus-coded M2 protein is nearly invariant in all influenza A strains. We genetically fused this M2 domain to the hepatitis B virus core (HBc) protein to create fusion gene coding for M2HBc; this gene was efficiently expressed in Escherichia coli. Intraperitoneal or intranasal administration of purified M2HBc particles to mice provided 90-100% protection against a lethal virus challenge. The protection was mediated by antibodies, as it was transferable by serum. The enhanced immunogenicity of the M2 extracellular domain exposed on HBc particles allows broad-spectrum, long-lasting protection against influenza A infections. 相似文献
19.
王福春 《微生物学免疫学进展》2014,(2):43-45
目的了解甲型H3N2流感暴发流行特征,为制定预防措施提供依据。方法对和温村小学239名学生流感发病及流感疫苗接种情况进行调查,对发病者逐一个案调查登记,采集患者咽拭子标本送百色市疾病预防控制中心实验室检测确诊。结果该校学生流感发病33例,发病率为13.81%,学前班及1~6年级共7个班均有病例发生,发病班级为100%。发病者中,男性18例,女性15例,男女性别比为1.2∶1,男女发病率分别为14.52%(18/124)、13.04%(15/115),(χ2=0.11,P0.05),男女发病率差异无统计学意义。患者咽拭子标本5人份,经实验室检测甲型H3N2流感病毒核酸阳性率为100%。结论该校学生无流感疫苗免疫接种史,易感人群积累,是本次甲型H3N2流感暴发流行的根本原因。应在每年秋冬流感流行季节前一个月,加强中小学校学生流感疫苗接种,提高易感人群免疫力,防止甲型H3N2流感扩散蔓延。 相似文献
20.
H9N2 influenza viruses have been circulating worldwide in multiple avian species and have repeatedly infected humans to cause typical disease. The continued avian-to-human interspecies transmission of H9N2 viruses raises concerns about the possibility of viral adaption with increased virulence for humans. To investigate the genetic basis of H9N2 influenza virus host range and pathogenicity in mammals, we generated a mouse-adapted H9N2 virus (SD16-MA) that possessed significantly higher virulence than wide-type virus (SD16). Increased virulence was detectable after 8 sequential lung passages in mice. Five amino acid substitutions were found in the genome of SD16-MA compared with SD16 virus: PB2 (M147L, V250G and E627K), HA (L226Q) and M1 (R210K). Assessments of replication in mice showed that all of the SD16-MA PB2, HA and M1 genome segments increased virus replication; however, only the mouse-adapted PB2 significantly increased virulence. Although the PB2 E627K amino acid substitution enhanced viral polymerase activity and replication, none of the single mutations of mouse adapted PB2 could confer increased virulence on the SD16 backbone. The combination of M147L and E627K significantly enhanced viral replication ability and virulence in mice. Thus, our results show that the combination of PB2 amino acids at position 147 and 627 is critical for the increased pathogenicity of H9N2 influenza virus in mammalian host. 相似文献